File size: 69,238 Bytes
3bdb76c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 |
from dreamcoder.enumeration import *
from dreamcoder.grammar import *
# luke
import gc
try:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.utils.rnn import pack_padded_sequence
except:
eprint("WARNING: Could not import torch. This is only okay when doing pypy compression.")
try:
import numpy as np
except:
eprint("WARNING: Could not import np. This is only okay when doing pypy compression.")
import json
def variable(x, volatile=False, cuda=False):
if isinstance(x, list):
x = np.array(x)
if isinstance(x, (np.ndarray, np.generic)):
x = torch.from_numpy(x)
if cuda:
x = x.cuda()
return Variable(x, volatile=volatile)
def maybe_cuda(x, use_cuda):
if use_cuda:
return x.cuda()
else:
return x
def is_torch_not_a_number(v):
"""checks whether a tortured variable is nan"""
v = v.data
if not ((v == v).item()):
return True
return False
def is_torch_invalid(v):
"""checks whether a torch variable is nan or inf"""
if is_torch_not_a_number(v):
return True
a = v - v
if is_torch_not_a_number(a):
return True
return False
def _relu(x): return x.clamp(min=0)
class Entropy(nn.Module):
"""Calculates the entropy of logits"""
def __init__(self):
super(Entropy, self).__init__()
def forward(self, x):
b = F.softmax(x, dim=0) * F.log_softmax(x, dim=0)
b = -1.0 * b.sum()
return b
class GrammarNetwork(nn.Module):
"""Neural network that outputs a grammar"""
def __init__(self, inputDimensionality, grammar):
super(GrammarNetwork, self).__init__()
self.logProductions = nn.Linear(inputDimensionality, len(grammar)+1)
self.grammar = grammar
def forward(self, x):
"""Takes as input inputDimensionality-dimensional vector and returns Grammar
Tensor-valued probabilities"""
logProductions = self.logProductions(x)
return Grammar(logProductions[-1].view(1), #logVariable
[(logProductions[k].view(1), t, program)
for k, (_, t, program) in enumerate(self.grammar.productions)],
continuationType=self.grammar.continuationType)
def batchedLogLikelihoods(self, xs, summaries):
"""Takes as input BxinputDimensionality vector & B likelihood summaries;
returns B-dimensional vector containing log likelihood of each summary"""
use_cuda = xs.device.type == 'cuda'
B = xs.size(0)
assert len(summaries) == B
logProductions = self.logProductions(xs)
# uses[b][p] is # uses of primitive p by summary b
uses = np.zeros((B,len(self.grammar) + 1))
for b,summary in enumerate(summaries):
for p, production in enumerate(self.grammar.primitives):
uses[b,p] = summary.uses.get(production, 0.)
uses[b,len(self.grammar)] = summary.uses.get(Index(0), 0)
numerator = (logProductions * maybe_cuda(torch.from_numpy(uses).float(),use_cuda)).sum(1)
numerator += maybe_cuda(torch.tensor([summary.constant for summary in summaries ]).float(), use_cuda)
alternativeSet = {normalizer
for s in summaries
for normalizer in s.normalizers }
alternativeSet = list(alternativeSet)
mask = np.zeros((len(alternativeSet), len(self.grammar) + 1))
for tau in range(len(alternativeSet)):
for p, production in enumerate(self.grammar.primitives):
mask[tau,p] = 0. if production in alternativeSet[tau] else NEGATIVEINFINITY
mask[tau,len(self.grammar)] = 0. if Index(0) in alternativeSet[tau] else NEGATIVEINFINITY
mask = maybe_cuda(torch.tensor(mask).float(), use_cuda)
# mask: Rx|G|
# logProductions: Bx|G|
# Want: mask + logProductions : BxRx|G| = z
z = mask.repeat(B,1,1) + logProductions.repeat(len(alternativeSet),1,1).transpose(1,0)
# z: BxR
z = torch.logsumexp(z, 2) # pytorch 1.0 dependency
# Calculate how many times each normalizer was used
N = np.zeros((B, len(alternativeSet)))
for b, summary in enumerate(summaries):
for tau, alternatives in enumerate(alternativeSet):
N[b, tau] = summary.normalizers.get(alternatives,0.)
denominator = (maybe_cuda(torch.tensor(N).float(),use_cuda) * z).sum(1)
return numerator - denominator
class ContextualGrammarNetwork_LowRank(nn.Module):
def __init__(self, inputDimensionality, grammar, R=16):
"""Low-rank approximation to bigram model. Parameters is linear in number of primitives.
R: maximum rank"""
super(ContextualGrammarNetwork_LowRank, self).__init__()
self.grammar = grammar
self.R = R # embedding size
# library now just contains a list of indicies which go with each primitive
self.grammar = grammar
self.library = {}
self.n_grammars = 0
for prim in grammar.primitives:
numberOfArguments = len(prim.infer().functionArguments())
idx_list = list(range(self.n_grammars, self.n_grammars+numberOfArguments))
self.library[prim] = idx_list
self.n_grammars += numberOfArguments
# We had an extra grammar for when there is no parent and for when the parent is a variable
self.n_grammars += 2
self.transitionMatrix = LowRank(inputDimensionality, self.n_grammars, len(grammar) + 1, R)
def grammarFromVector(self, logProductions):
return Grammar(logProductions[-1].view(1),
[(logProductions[k].view(1), t, program)
for k, (_, t, program) in enumerate(self.grammar.productions)],
continuationType=self.grammar.continuationType)
def forward(self, x):
assert len(x.size()) == 1, "contextual grammar doesn't currently support batching"
transitionMatrix = self.transitionMatrix(x)
return ContextualGrammar(self.grammarFromVector(transitionMatrix[-1]), self.grammarFromVector(transitionMatrix[-2]),
{prim: [self.grammarFromVector(transitionMatrix[j]) for j in js]
for prim, js in self.library.items()} )
def vectorizedLogLikelihoods(self, x, summaries):
B = len(summaries)
G = len(self.grammar) + 1
# Which column of the transition matrix corresponds to which primitive
primitiveColumn = {p: c
for c, (_1,_2,p) in enumerate(self.grammar.productions) }
primitiveColumn[Index(0)] = G - 1
# Which row of the transition matrix corresponds to which context
contextRow = {(parent, index): r
for parent, indices in self.library.items()
for index, r in enumerate(indices) }
contextRow[(None,None)] = self.n_grammars - 1
contextRow[(Index(0),None)] = self.n_grammars - 2
transitionMatrix = self.transitionMatrix(x)
# uses[b][g][p] is # uses of primitive p by summary b for parent g
uses = np.zeros((B,self.n_grammars,len(self.grammar)+1))
for b,summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for p, production in enumerate(self.grammar.primitives):
uses[b,g,p] = s.uses.get(production, 0.)
uses[b,g,len(self.grammar)] = s.uses.get(Index(0), 0)
# noParent: this is the last network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 1, p] = summary.noParent.uses.get(production, 0.)
uses[b, self.n_grammars - 1, G - 1] = summary.noParent.uses.get(Index(0), 0.)
# variableParent: this is the penultimate network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 2, p] = summary.variableParent.uses.get(production, 0.)
uses[b, self.n_grammars - 2, G - 1] = summary.variableParent.uses.get(Index(0), 0.)
uses = maybe_cuda(torch.tensor(uses).float(),use_cuda)
numerator = uses.view(B, -1) @ transitionMatrix.view(-1)
constant = np.zeros(B)
for b,summary in enumerate(summaries):
constant[b] += summary.noParent.constant + summary.variableParent.constant
for ss in summary.library.values():
for s in ss:
constant[b] += s.constant
numerator = numerator + maybe_cuda(torch.tensor(constant).float(),use_cuda)
# Calculate the god-awful denominator
# Map from (parent, index, {set-of-alternatives}) to [occurrences-in-summary-zero, occurrences-in-summary-one, ...]
alternativeSet = {}
for b,summary in enumerate(summaries):
for normalizer, frequency in summary.noParent.normalizers.items():
k = (None,None,normalizer)
alternativeSet[k] = alternativeSet.get(k, np.zeros(B))
alternativeSet[k][b] += frequency
for normalizer, frequency in summary.variableParent.normalizers.items():
k = (Index(0),None,normalizer)
alternativeSet[k] = alternativeSet.get(k, np.zeros(B))
alternativeSet[k][b] += frequency
for parent, ss in summary.library.items():
for argumentIndex, s in enumerate(ss):
for normalizer, frequency in s.normalizers.items():
k = (parent, argumentIndex, normalizer)
alternativeSet[k] = alternativeSet.get(k, zeros(B))
alternativeSet[k][b] += frequency
# Calculate each distinct normalizing constant
alternativeNormalizer = {}
for parent, index, alternatives in alternativeSet:
r = transitionMatrix[contextRow[(parent, index)]]
entries = r[ [primitiveColumn[alternative] for alternative in alternatives ]]
alternativeNormalizer[(parent, index, alternatives)] = torch.logsumexp(entries, dim=0)
# Concatenate the normalizers into a vector
normalizerKeys = list(alternativeSet.keys())
normalizerVector = torch.cat([ alternativeNormalizer[k] for k in normalizerKeys])
assert False, "This function is still in progress."
def batchedLogLikelihoods(self, xs, summaries):
"""Takes as input BxinputDimensionality vector & B likelihood summaries;
returns B-dimensional vector containing log likelihood of each summary"""
use_cuda = xs.device.type == 'cuda'
B = xs.shape[0]
G = len(self.grammar) + 1
assert len(summaries) == B
# logProductions: Bx n_grammars x G
logProductions = self.transitionMatrix(xs)
# uses[b][g][p] is # uses of primitive p by summary b for parent g
uses = np.zeros((B,self.n_grammars,len(self.grammar)+1))
for b,summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for p, production in enumerate(self.grammar.primitives):
uses[b,g,p] = s.uses.get(production, 0.)
uses[b,g,len(self.grammar)] = s.uses.get(Index(0), 0)
# noParent: this is the last network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 1, p] = summary.noParent.uses.get(production, 0.)
uses[b, self.n_grammars - 1, G - 1] = summary.noParent.uses.get(Index(0), 0.)
# variableParent: this is the penultimate network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 2, p] = summary.variableParent.uses.get(production, 0.)
uses[b, self.n_grammars - 2, G - 1] = summary.variableParent.uses.get(Index(0), 0.)
numerator = (logProductions*maybe_cuda(torch.tensor(uses).float(),use_cuda)).view(B,-1).sum(1)
constant = np.zeros(B)
for b,summary in enumerate(summaries):
constant[b] += summary.noParent.constant + summary.variableParent.constant
for ss in summary.library.values():
for s in ss:
constant[b] += s.constant
numerator += maybe_cuda(torch.tensor(constant).float(),use_cuda)
if True:
# Calculate the god-awful denominator
alternativeSet = set()
for summary in summaries:
for normalizer in summary.noParent.normalizers: alternativeSet.add(normalizer)
for normalizer in summary.variableParent.normalizers: alternativeSet.add(normalizer)
for ss in summary.library.values():
for s in ss:
for normalizer in s.normalizers: alternativeSet.add(normalizer)
alternativeSet = list(alternativeSet)
mask = np.zeros((len(alternativeSet), G))
for tau in range(len(alternativeSet)):
for p, production in enumerate(self.grammar.primitives):
mask[tau,p] = 0. if production in alternativeSet[tau] else NEGATIVEINFINITY
mask[tau, G - 1] = 0. if Index(0) in alternativeSet[tau] else NEGATIVEINFINITY
mask = maybe_cuda(torch.tensor(mask).float(), use_cuda)
z = mask.repeat(self.n_grammars,1,1).repeat(B,1,1,1) + \
logProductions.repeat(len(alternativeSet),1,1,1).transpose(0,1).transpose(1,2)
z = torch.logsumexp(z, 3) # pytorch 1.0 dependency
N = np.zeros((B, self.n_grammars, len(alternativeSet)))
for b, summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for r, alternatives in enumerate(alternativeSet):
N[b,g,r] = s.normalizers.get(alternatives, 0.)
# noParent: this is the last network output
for r, alternatives in enumerate(alternativeSet):
N[b,self.n_grammars - 1,r] = summary.noParent.normalizers.get(alternatives, 0.)
# variableParent: this is the penultimate network output
for r, alternatives in enumerate(alternativeSet):
N[b,self.n_grammars - 2,r] = summary.variableParent.normalizers.get(alternatives, 0.)
N = maybe_cuda(torch.tensor(N).float(), use_cuda)
denominator = (N*z).sum(1).sum(1)
else:
gs = [ self(xs[b]) for b in range(B) ]
denominator = torch.cat([ summary.denominator(g) for summary,g in zip(summaries, gs) ])
ll = numerator - denominator
if False: # verifying that batching works correctly
gs = [ self(xs[b]) for b in range(B) ]
_l = torch.cat([ summary.logLikelihood(g) for summary,g in zip(summaries, gs) ])
assert torch.all((ll - _l).abs() < 0.0001)
return ll
class ContextualGrammarNetwork_Mask(nn.Module):
def __init__(self, inputDimensionality, grammar):
"""Bigram model, but where the bigram transitions are unconditional.
Individual primitive probabilities are still conditional (predicted by neural network)
"""
super(ContextualGrammarNetwork_Mask, self).__init__()
self.grammar = grammar
# library now just contains a list of indicies which go with each primitive
self.grammar = grammar
self.library = {}
self.n_grammars = 0
for prim in grammar.primitives:
numberOfArguments = len(prim.infer().functionArguments())
idx_list = list(range(self.n_grammars, self.n_grammars+numberOfArguments))
self.library[prim] = idx_list
self.n_grammars += numberOfArguments
# We had an extra grammar for when there is no parent and for when the parent is a variable
self.n_grammars += 2
self._transitionMatrix = nn.Parameter(nn.init.xavier_uniform(torch.Tensor(self.n_grammars, len(grammar) + 1)))
self._logProductions = nn.Linear(inputDimensionality, len(grammar)+1)
def transitionMatrix(self, x):
if len(x.shape) == 1: # not batched
return self._logProductions(x) + self._transitionMatrix # will broadcast
elif len(x.shape) == 2: # batched
return self._logProductions(x).unsqueeze(1).repeat(1,self.n_grammars,1) + \
self._transitionMatrix.unsqueeze(0).repeat(x.size(0),1,1)
else:
assert False, "unknown shape for transition matrix input"
def grammarFromVector(self, logProductions):
return Grammar(logProductions[-1].view(1),
[(logProductions[k].view(1), t, program)
for k, (_, t, program) in enumerate(self.grammar.productions)],
continuationType=self.grammar.continuationType)
def forward(self, x):
assert len(x.size()) == 1, "contextual grammar doesn't currently support batching"
transitionMatrix = self.transitionMatrix(x)
return ContextualGrammar(self.grammarFromVector(transitionMatrix[-1]), self.grammarFromVector(transitionMatrix[-2]),
{prim: [self.grammarFromVector(transitionMatrix[j]) for j in js]
for prim, js in self.library.items()} )
def batchedLogLikelihoods(self, xs, summaries):
"""Takes as input BxinputDimensionality vector & B likelihood summaries;
returns B-dimensional vector containing log likelihood of each summary"""
use_cuda = xs.device.type == 'cuda'
B = xs.shape[0]
G = len(self.grammar) + 1
assert len(summaries) == B
# logProductions: Bx n_grammars x G
logProductions = self.transitionMatrix(xs)
# uses[b][g][p] is # uses of primitive p by summary b for parent g
uses = np.zeros((B,self.n_grammars,len(self.grammar)+1))
for b,summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for p, production in enumerate(self.grammar.primitives):
uses[b,g,p] = s.uses.get(production, 0.)
uses[b,g,len(self.grammar)] = s.uses.get(Index(0), 0)
# noParent: this is the last network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 1, p] = summary.noParent.uses.get(production, 0.)
uses[b, self.n_grammars - 1, G - 1] = summary.noParent.uses.get(Index(0), 0.)
# variableParent: this is the penultimate network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 2, p] = summary.variableParent.uses.get(production, 0.)
uses[b, self.n_grammars - 2, G - 1] = summary.variableParent.uses.get(Index(0), 0.)
numerator = (logProductions*maybe_cuda(torch.tensor(uses).float(),use_cuda)).view(B,-1).sum(1)
constant = np.zeros(B)
for b,summary in enumerate(summaries):
constant[b] += summary.noParent.constant + summary.variableParent.constant
for ss in summary.library.values():
for s in ss:
constant[b] += s.constant
numerator += maybe_cuda(torch.tensor(constant).float(),use_cuda)
if True:
# Calculate the god-awful denominator
alternativeSet = set()
for summary in summaries:
for normalizer in summary.noParent.normalizers: alternativeSet.add(normalizer)
for normalizer in summary.variableParent.normalizers: alternativeSet.add(normalizer)
for ss in summary.library.values():
for s in ss:
for normalizer in s.normalizers: alternativeSet.add(normalizer)
alternativeSet = list(alternativeSet)
mask = np.zeros((len(alternativeSet), G))
for tau in range(len(alternativeSet)):
for p, production in enumerate(self.grammar.primitives):
mask[tau,p] = 0. if production in alternativeSet[tau] else NEGATIVEINFINITY
mask[tau, G - 1] = 0. if Index(0) in alternativeSet[tau] else NEGATIVEINFINITY
mask = maybe_cuda(torch.tensor(mask).float(), use_cuda)
z = mask.repeat(self.n_grammars,1,1).repeat(B,1,1,1) + \
logProductions.repeat(len(alternativeSet),1,1,1).transpose(0,1).transpose(1,2)
z = torch.logsumexp(z, 3) # pytorch 1.0 dependency
N = np.zeros((B, self.n_grammars, len(alternativeSet)))
for b, summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for r, alternatives in enumerate(alternativeSet):
N[b,g,r] = s.normalizers.get(alternatives, 0.)
# noParent: this is the last network output
for r, alternatives in enumerate(alternativeSet):
N[b,self.n_grammars - 1,r] = summary.noParent.normalizers.get(alternatives, 0.)
# variableParent: this is the penultimate network output
for r, alternatives in enumerate(alternativeSet):
N[b,self.n_grammars - 2,r] = summary.variableParent.normalizers.get(alternatives, 0.)
N = maybe_cuda(torch.tensor(N).float(), use_cuda)
denominator = (N*z).sum(1).sum(1)
else:
gs = [ self(xs[b]) for b in range(B) ]
denominator = torch.cat([ summary.denominator(g) for summary,g in zip(summaries, gs) ])
ll = numerator - denominator
if False: # verifying that batching works correctly
gs = [ self(xs[b]) for b in range(B) ]
_l = torch.cat([ summary.logLikelihood(g) for summary,g in zip(summaries, gs) ])
assert torch.all((ll - _l).abs() < 0.0001)
return ll
class ContextualGrammarNetwork(nn.Module):
"""Like GrammarNetwork but ~contextual~"""
def __init__(self, inputDimensionality, grammar):
super(ContextualGrammarNetwork, self).__init__()
# library now just contains a list of indicies which go with each primitive
self.grammar = grammar
self.library = {}
self.n_grammars = 0
for prim in grammar.primitives:
numberOfArguments = len(prim.infer().functionArguments())
idx_list = list(range(self.n_grammars, self.n_grammars+numberOfArguments))
self.library[prim] = idx_list
self.n_grammars += numberOfArguments
# We had an extra grammar for when there is no parent and for when the parent is a variable
self.n_grammars += 2
self.network = nn.Linear(inputDimensionality, (self.n_grammars)*(len(grammar) + 1))
def grammarFromVector(self, logProductions):
return Grammar(logProductions[-1].view(1),
[(logProductions[k].view(1), t, program)
for k, (_, t, program) in enumerate(self.grammar.productions)],
continuationType=self.grammar.continuationType)
def forward(self, x):
assert len(x.size()) == 1, "contextual grammar doesn't currently support batching"
allVars = self.network(x).view(self.n_grammars, -1)
return ContextualGrammar(self.grammarFromVector(allVars[-1]), self.grammarFromVector(allVars[-2]),
{prim: [self.grammarFromVector(allVars[j]) for j in js]
for prim, js in self.library.items()} )
def batchedLogLikelihoods(self, xs, summaries):
use_cuda = xs.device.type == 'cuda'
"""Takes as input BxinputDimensionality vector & B likelihood summaries;
returns B-dimensional vector containing log likelihood of each summary"""
B = xs.shape[0]
G = len(self.grammar) + 1
assert len(summaries) == B
# logProductions: Bx n_grammars x G
logProductions = self.network(xs).view(B, self.n_grammars, G)
# uses[b][g][p] is # uses of primitive p by summary b for parent g
uses = np.zeros((B,self.n_grammars,len(self.grammar)+1))
for b,summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for p, production in enumerate(self.grammar.primitives):
uses[b,g,p] = s.uses.get(production, 0.)
uses[b,g,len(self.grammar)] = s.uses.get(Index(0), 0)
# noParent: this is the last network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 1, p] = summary.noParent.uses.get(production, 0.)
uses[b, self.n_grammars - 1, G - 1] = summary.noParent.uses.get(Index(0), 0.)
# variableParent: this is the penultimate network output
for p, production in enumerate(self.grammar.primitives):
uses[b, self.n_grammars - 2, p] = summary.variableParent.uses.get(production, 0.)
uses[b, self.n_grammars - 2, G - 1] = summary.variableParent.uses.get(Index(0), 0.)
numerator = (logProductions*maybe_cuda(torch.tensor(uses).float(),use_cuda)).view(B,-1).sum(1)
constant = np.zeros(B)
for b,summary in enumerate(summaries):
constant[b] += summary.noParent.constant + summary.variableParent.constant
for ss in summary.library.values():
for s in ss:
constant[b] += s.constant
numerator += maybe_cuda(torch.tensor(constant).float(),use_cuda)
# Calculate the god-awful denominator
alternativeSet = set()
for summary in summaries:
for normalizer in summary.noParent.normalizers: alternativeSet.add(normalizer)
for normalizer in summary.variableParent.normalizers: alternativeSet.add(normalizer)
for ss in summary.library.values():
for s in ss:
for normalizer in s.normalizers: alternativeSet.add(normalizer)
alternativeSet = list(alternativeSet)
mask = np.zeros((len(alternativeSet), G))
for tau in range(len(alternativeSet)):
for p, production in enumerate(self.grammar.primitives):
mask[tau,p] = 0. if production in alternativeSet[tau] else NEGATIVEINFINITY
mask[tau, G - 1] = 0. if Index(0) in alternativeSet[tau] else NEGATIVEINFINITY
mask = maybe_cuda(torch.tensor(mask).float(), use_cuda)
z = mask.repeat(self.n_grammars,1,1).repeat(B,1,1,1) + \
logProductions.repeat(len(alternativeSet),1,1,1).transpose(0,1).transpose(1,2)
z = torch.logsumexp(z, 3) # pytorch 1.0 dependency
N = np.zeros((B, self.n_grammars, len(alternativeSet)))
for b, summary in enumerate(summaries):
for e, ss in summary.library.items():
for g,s in zip(self.library[e], ss):
assert g < self.n_grammars - 2
for r, alternatives in enumerate(alternativeSet):
N[b,g,r] = s.normalizers.get(alternatives, 0.)
# noParent: this is the last network output
for r, alternatives in enumerate(alternativeSet):
N[b,self.n_grammars - 1,r] = summary.noParent.normalizers.get(alternatives, 0.)
# variableParent: this is the penultimate network output
for r, alternatives in enumerate(alternativeSet):
N[b,self.n_grammars - 2,r] = summary.variableParent.normalizers.get(alternatives, 0.)
N = maybe_cuda(torch.tensor(N).float(), use_cuda)
denominator = (N*z).sum(1).sum(1)
ll = numerator - denominator
if False: # verifying that batching works correctly
gs = [ self(xs[b]) for b in range(B) ]
_l = torch.cat([ summary.logLikelihood(g) for summary,g in zip(summaries, gs) ])
assert torch.all((ll - _l).abs() < 0.0001)
return ll
class RecognitionModel(nn.Module):
def __init__(self,featureExtractor,grammar,hidden=[64],activation="tanh",
rank=None,contextual=False,mask=False,
cuda=False,
previousRecognitionModel=None,
id=0):
super(RecognitionModel, self).__init__()
self.id = id
self.trained=False
self.use_cuda = cuda
self.featureExtractor = featureExtractor
# Sanity check - make sure that all of the parameters of the
# feature extractor were added to our parameters as well
if hasattr(featureExtractor, 'parameters'):
for parameter in featureExtractor.parameters():
assert any(myParameter is parameter for myParameter in self.parameters())
# Build the multilayer perceptron that is sandwiched between the feature extractor and the grammar
if activation == "sigmoid":
activation = nn.Sigmoid
elif activation == "relu":
activation = nn.ReLU
elif activation == "tanh":
activation = nn.Tanh
else:
raise Exception('Unknown activation function ' + str(activation))
self._MLP = nn.Sequential(*[ layer
for j in range(len(hidden))
for layer in [
nn.Linear(([featureExtractor.outputDimensionality] + hidden)[j],
hidden[j]),
activation()]])
self.entropy = Entropy()
if len(hidden) > 0:
self.outputDimensionality = self._MLP[-2].out_features
assert self.outputDimensionality == hidden[-1]
else:
self.outputDimensionality = self.featureExtractor.outputDimensionality
self.contextual = contextual
if self.contextual:
if mask:
self.grammarBuilder = ContextualGrammarNetwork_Mask(self.outputDimensionality, grammar)
else:
self.grammarBuilder = ContextualGrammarNetwork_LowRank(self.outputDimensionality, grammar, rank)
else:
self.grammarBuilder = GrammarNetwork(self.outputDimensionality, grammar)
self.grammar = ContextualGrammar.fromGrammar(grammar) if contextual else grammar
self.generativeModel = grammar
self._auxiliaryPrediction = nn.Linear(self.featureExtractor.outputDimensionality,
len(self.grammar.primitives))
self._auxiliaryLoss = nn.BCEWithLogitsLoss()
if cuda: self.cuda()
if previousRecognitionModel:
self._MLP.load_state_dict(previousRecognitionModel._MLP.state_dict())
self.featureExtractor.load_state_dict(previousRecognitionModel.featureExtractor.state_dict())
def auxiliaryLoss(self, frontier, features):
# Compute a vector of uses
ls = frontier.bestPosterior.program
def uses(summary):
if hasattr(summary, 'uses'):
return torch.tensor([ float(int(p in summary.uses))
for p in self.generativeModel.primitives ])
assert hasattr(summary, 'noParent')
u = uses(summary.noParent) + uses(summary.variableParent)
for ss in summary.library.values():
for s in ss:
u += uses(s)
return u
u = uses(ls)
u[u > 1.] = 1.
if self.use_cuda: u = u.cuda()
al = self._auxiliaryLoss(self._auxiliaryPrediction(features), u)
return al
def taskEmbeddings(self, tasks):
return {task: self.featureExtractor.featuresOfTask(task).data.cpu().numpy()
for task in tasks}
def forward(self, features):
"""returns either a Grammar or a ContextualGrammar
Takes as input the output of featureExtractor.featuresOfTask"""
features = self._MLP(features)
return self.grammarBuilder(features)
def auxiliaryPrimitiveEmbeddings(self):
"""Returns the actual outputDimensionality weight vectors for each of the primitives."""
auxiliaryWeights = self._auxiliaryPrediction.weight.data.cpu().numpy()
primitivesDict = {self.grammar.primitives[i] : auxiliaryWeights[i, :] for i in range(len(self.grammar.primitives))}
return primitivesDict
def grammarOfTask(self, task):
features = self.featureExtractor.featuresOfTask(task)
if features is None: return None
return self(features)
def grammarLogProductionsOfTask(self, task):
"""Returns the grammar logits from non-contextual models."""
features = self.featureExtractor.featuresOfTask(task)
if features is None: return None
if hasattr(self, 'hiddenLayers'):
# Backward compatability with old checkpoints.
for layer in self.hiddenLayers:
features = self.activation(layer(features))
# return features
return self.noParent[1](features)
else:
features = self._MLP(features)
if self.contextual:
if hasattr(self.grammarBuilder, 'variableParent'):
return self.grammarBuilder.variableParent.logProductions(features)
elif hasattr(self.grammarBuilder, 'network'):
return self.grammarBuilder.network(features).view(-1)
elif hasattr(self.grammarBuilder, 'transitionMatrix'):
return self.grammarBuilder.transitionMatrix(features).view(-1)
else:
assert False
else:
return self.grammarBuilder.logProductions(features)
def grammarFeatureLogProductionsOfTask(self, task):
return torch.tensor(self.grammarOfTask(task).untorch().featureVector())
def grammarLogProductionDistanceToTask(self, task, tasks):
"""Returns the cosine similarity of all other tasks to a given task."""
taskLogits = self.grammarLogProductionsOfTask(task).unsqueeze(0) # Change to [1, D]
assert taskLogits is not None, 'Grammar log productions are not defined for this task.'
otherTasks = [t for t in tasks if t is not task] # [nTasks -1 , D]
# Build matrix of all other tasks.
otherLogits = torch.stack([self.grammarLogProductionsOfTask(t) for t in otherTasks])
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
cosMatrix = cos(taskLogits, otherLogits)
return cosMatrix.data.cpu().numpy()
def grammarEntropyOfTask(self, task):
"""Returns the entropy of the grammar distribution from non-contextual models for a task."""
grammarLogProductionsOfTask = self.grammarLogProductionsOfTask(task)
if grammarLogProductionsOfTask is None: return None
if hasattr(self, 'entropy'):
return self.entropy(grammarLogProductionsOfTask)
else:
e = Entropy()
return e(grammarLogProductionsOfTask)
def taskAuxiliaryLossLayer(self, tasks):
return {task: self._auxiliaryPrediction(self.featureExtractor.featuresOfTask(task)).view(-1).data.cpu().numpy()
for task in tasks}
def taskGrammarFeatureLogProductions(self, tasks):
return {task: self.grammarFeatureLogProductionsOfTask(task).data.cpu().numpy()
for task in tasks}
def taskGrammarLogProductions(self, tasks):
return {task: self.grammarLogProductionsOfTask(task).data.cpu().numpy()
for task in tasks}
def taskGrammarStartProductions(self, tasks):
return {task: np.array([l for l,_1,_2 in g.productions ])
for task in tasks
for g in [self.grammarOfTask(task).untorch().noParent] }
def taskHiddenStates(self, tasks):
return {task: self._MLP(self.featureExtractor.featuresOfTask(task)).view(-1).data.cpu().numpy()
for task in tasks}
def taskGrammarEntropies(self, tasks):
return {task: self.grammarEntropyOfTask(task).data.cpu().numpy()
for task in tasks}
def frontierKL(self, frontier, auxiliary=False, vectorized=True):
features = self.featureExtractor.featuresOfTask(frontier.task)
if features is None:
return None, None
# Monte Carlo estimate: draw a sample from the frontier
entry = frontier.sample()
al = self.auxiliaryLoss(frontier, features if auxiliary else features.detach())
if not vectorized:
g = self(features)
return - entry.program.logLikelihood(g), al
else:
features = self._MLP(features).unsqueeze(0)
ll = self.grammarBuilder.batchedLogLikelihoods(features, [entry.program]).view(-1)
return -ll, al
def frontierBiasOptimal(self, frontier, auxiliary=False, vectorized=True):
if not vectorized:
features = self.featureExtractor.featuresOfTask(frontier.task)
if features is None: return None, None
al = self.auxiliaryLoss(frontier, features if auxiliary else features.detach())
g = self(features)
summaries = [entry.program for entry in frontier]
likelihoods = torch.cat([entry.program.logLikelihood(g) + entry.logLikelihood
for entry in frontier ])
best = likelihoods.max()
return -best, al
batchSize = len(frontier.entries)
features = self.featureExtractor.featuresOfTask(frontier.task)
if features is None: return None, None
al = self.auxiliaryLoss(frontier, features if auxiliary else features.detach())
features = self._MLP(features)
features = features.expand(batchSize, features.size(-1)) # TODO
lls = self.grammarBuilder.batchedLogLikelihoods(features, [entry.program for entry in frontier])
actual_ll = torch.Tensor([ entry.logLikelihood for entry in frontier])
lls = lls + (actual_ll.cuda() if self.use_cuda else actual_ll)
ml = -lls.max() #Beware that inputs to max change output type
return ml, al
def replaceProgramsWithLikelihoodSummaries(self, frontier):
return Frontier(
[FrontierEntry(
program=self.grammar.closedLikelihoodSummary(frontier.task.request, e.program),
logLikelihood=e.logLikelihood,
logPrior=e.logPrior) for e in frontier],
task=frontier.task)
def train(self, frontiers, _=None, steps=None, lr=0.001, topK=5, CPUs=1,
timeout=None, evaluationTimeout=0.001,
helmholtzFrontiers=[], helmholtzRatio=0., helmholtzBatch=500,
biasOptimal=None, defaultRequest=None, auxLoss=False, vectorized=True):
"""
helmholtzRatio: What fraction of the training data should be forward samples from the generative model?
helmholtzFrontiers: Frontiers from programs enumerated from generative model (optional)
If helmholtzFrontiers is not provided then we will sample programs during training
"""
assert (steps is not None) or (timeout is not None), \
"Cannot train recognition model without either a bound on the number of gradient steps or bound on the training time"
if steps is None: steps = 9999999
if biasOptimal is None: biasOptimal = len(helmholtzFrontiers) > 0
requests = [frontier.task.request for frontier in frontiers]
if len(requests) == 0 and helmholtzRatio > 0 and len(helmholtzFrontiers) == 0:
assert defaultRequest is not None, "You are trying to random Helmholtz training, but don't have any frontiers. Therefore we would not know the type of the program to sample. Try specifying defaultRequest=..."
requests = [defaultRequest]
frontiers = [frontier.topK(topK).normalize()
for frontier in frontiers if not frontier.empty]
if len(frontiers) == 0:
eprint("You didn't give me any nonempty replay frontiers to learn from. Going to learn from 100% Helmholtz samples")
helmholtzRatio = 1.
# Should we sample programs or use the enumerated programs?
randomHelmholtz = len(helmholtzFrontiers) == 0
class HelmholtzEntry:
def __init__(self, frontier, owner):
self.request = frontier.task.request
self.task = None
self.programs = [e.program for e in frontier]
self.frontier = Thunk(lambda: owner.replaceProgramsWithLikelihoodSummaries(frontier))
self.owner = owner
def clear(self): self.task = None
def calculateTask(self):
assert self.task is None
p = random.choice(self.programs)
return self.owner.featureExtractor.taskOfProgram(p, self.request)
def makeFrontier(self):
assert self.task is not None
f = Frontier(self.frontier.force().entries,
task=self.task)
return f
# Should we recompute tasks on the fly from Helmholtz? This
# should be done if the task is stochastic, or if there are
# different kinds of inputs on which it could be run. For
# example, lists and strings need this; towers and graphics do
# not. There is no harm in recomputed the tasks, it just
# wastes time.
if not hasattr(self.featureExtractor, 'recomputeTasks'):
self.featureExtractor.recomputeTasks = True
helmholtzFrontiers = [HelmholtzEntry(f, self)
for f in helmholtzFrontiers]
random.shuffle(helmholtzFrontiers)
helmholtzIndex = [0]
def getHelmholtz():
if randomHelmholtz:
if helmholtzIndex[0] >= len(helmholtzFrontiers):
updateHelmholtzTasks()
helmholtzIndex[0] = 0
return getHelmholtz()
helmholtzIndex[0] += 1
return helmholtzFrontiers[helmholtzIndex[0] - 1].makeFrontier()
f = helmholtzFrontiers[helmholtzIndex[0]]
if f.task is None:
with timing("Evaluated another batch of Helmholtz tasks"):
updateHelmholtzTasks()
return getHelmholtz()
helmholtzIndex[0] += 1
if helmholtzIndex[0] >= len(helmholtzFrontiers):
helmholtzIndex[0] = 0
random.shuffle(helmholtzFrontiers)
if self.featureExtractor.recomputeTasks:
for fp in helmholtzFrontiers:
fp.clear()
return getHelmholtz() # because we just cleared everything
assert f.task is not None
return f.makeFrontier()
def updateHelmholtzTasks():
updateCPUs = CPUs if hasattr(self.featureExtractor, 'parallelTaskOfProgram') and self.featureExtractor.parallelTaskOfProgram else 1
if updateCPUs > 1: eprint("Updating Helmholtz tasks with",updateCPUs,"CPUs",
"while using",getThisMemoryUsage(),"memory")
if randomHelmholtz:
newFrontiers = self.sampleManyHelmholtz(requests, helmholtzBatch, CPUs)
newEntries = []
for f in newFrontiers:
e = HelmholtzEntry(f,self)
e.task = f.task
newEntries.append(e)
helmholtzFrontiers.clear()
helmholtzFrontiers.extend(newEntries)
return
# Save some memory by freeing up the tasks as we go through them
if self.featureExtractor.recomputeTasks:
for hi in range(max(0, helmholtzIndex[0] - helmholtzBatch,
min(helmholtzIndex[0], len(helmholtzFrontiers)))):
helmholtzFrontiers[hi].clear()
if hasattr(self.featureExtractor, 'tasksOfPrograms'):
eprint("batching task calculation")
newTasks = self.featureExtractor.tasksOfPrograms(
[random.choice(hf.programs)
for hf in helmholtzFrontiers[helmholtzIndex[0]:helmholtzIndex[0] + helmholtzBatch] ],
[hf.request
for hf in helmholtzFrontiers[helmholtzIndex[0]:helmholtzIndex[0] + helmholtzBatch] ])
else:
newTasks = [hf.calculateTask()
for hf in helmholtzFrontiers[helmholtzIndex[0]:helmholtzIndex[0] + helmholtzBatch]]
"""
# catwong: Disabled for ensemble training.
newTasks = \
parallelMap(updateCPUs,
lambda f: f.calculateTask(),
helmholtzFrontiers[helmholtzIndex[0]:helmholtzIndex[0] + helmholtzBatch],
seedRandom=True)
"""
badIndices = []
endingIndex = min(helmholtzIndex[0] + helmholtzBatch, len(helmholtzFrontiers))
for i in range(helmholtzIndex[0], endingIndex):
helmholtzFrontiers[i].task = newTasks[i - helmholtzIndex[0]]
if helmholtzFrontiers[i].task is None: badIndices.append(i)
# Permanently kill anything which failed to give a task
for i in reversed(badIndices):
assert helmholtzFrontiers[i].task is None
del helmholtzFrontiers[i]
# We replace each program in the frontier with its likelihoodSummary
# This is because calculating likelihood summaries requires juggling types
# And type stuff is expensive!
frontiers = [self.replaceProgramsWithLikelihoodSummaries(f).normalize()
for f in frontiers]
eprint("(ID=%d): Training a recognition model from %d frontiers, %d%% Helmholtz, feature extractor %s." % (
self.id, len(frontiers), int(helmholtzRatio * 100), self.featureExtractor.__class__.__name__))
eprint("(ID=%d): Got %d Helmholtz frontiers - random Helmholtz training? : %s"%(
self.id, len(helmholtzFrontiers), len(helmholtzFrontiers) == 0))
eprint("(ID=%d): Contextual? %s" % (self.id, str(self.contextual)))
eprint("(ID=%d): Bias optimal? %s" % (self.id, str(biasOptimal)))
eprint(f"(ID={self.id}): Aux loss? {auxLoss} (n.b. we train a 'auxiliary' classifier anyway - this controls if gradients propagate back to the future extractor)")
# The number of Helmholtz samples that we generate at once
# Should only affect performance and shouldn't affect anything else
helmholtzSamples = []
optimizer = torch.optim.Adam(self.parameters(), lr=lr, eps=1e-3, amsgrad=True)
start = time.time()
losses, descriptionLengths, realLosses, dreamLosses, realMDL, dreamMDL = [], [], [], [], [], []
classificationLosses = []
totalGradientSteps = 0
epochs = 9999999
for i in range(1, epochs + 1):
if timeout and time.time() - start > timeout:
break
if totalGradientSteps > steps:
break
if helmholtzRatio < 1.:
permutedFrontiers = list(frontiers)
random.shuffle(permutedFrontiers)
else:
permutedFrontiers = [None]
finishedSteps = False
for frontier in permutedFrontiers:
# Randomly decide whether to sample from the generative model
dreaming = random.random() < helmholtzRatio
if dreaming: frontier = getHelmholtz()
self.zero_grad()
loss, classificationLoss = \
self.frontierBiasOptimal(frontier, auxiliary=auxLoss, vectorized=vectorized) if biasOptimal \
else self.frontierKL(frontier, auxiliary=auxLoss, vectorized=vectorized)
if loss is None:
if not dreaming:
eprint("ERROR: Could not extract features during experience replay.")
eprint("Task is:",frontier.task)
eprint("Aborting - we need to be able to extract features of every actual task.")
assert False
else:
continue
if is_torch_invalid(loss):
eprint("Invalid real-data loss!")
else:
(loss + classificationLoss).backward()
classificationLosses.append(classificationLoss.data.item())
optimizer.step()
totalGradientSteps += 1
losses.append(loss.data.item())
descriptionLengths.append(min(-e.logPrior for e in frontier))
if dreaming:
dreamLosses.append(losses[-1])
dreamMDL.append(descriptionLengths[-1])
else:
realLosses.append(losses[-1])
realMDL.append(descriptionLengths[-1])
if totalGradientSteps > steps:
break # Stop iterating, then print epoch and loss, then break to finish.
if (i == 1 or i % 10 == 0) and losses:
eprint("(ID=%d): " % self.id, "Epoch", i, "Loss", mean(losses))
if realLosses and dreamLosses:
eprint("(ID=%d): " % self.id, "\t\t(real loss): ", mean(realLosses), "\t(dream loss):", mean(dreamLosses))
eprint("(ID=%d): " % self.id, "\tvs MDL (w/o neural net)", mean(descriptionLengths))
if realMDL and dreamMDL:
eprint("\t\t(real MDL): ", mean(realMDL), "\t(dream MDL):", mean(dreamMDL))
eprint("(ID=%d): " % self.id, "\t%d cumulative gradient steps. %f steps/sec"%(totalGradientSteps,
totalGradientSteps/(time.time() - start)))
eprint("(ID=%d): " % self.id, "\t%d-way auxiliary classification loss"%len(self.grammar.primitives),sum(classificationLosses)/len(classificationLosses))
losses, descriptionLengths, realLosses, dreamLosses, realMDL, dreamMDL = [], [], [], [], [], []
classificationLosses = []
gc.collect()
eprint("(ID=%d): " % self.id, " Trained recognition model in",time.time() - start,"seconds")
self.trained=True
return self
def sampleHelmholtz(self, requests, statusUpdate=None, seed=None):
if seed is not None:
random.seed(seed)
request = random.choice(requests)
program = self.generativeModel.sample(request, maximumDepth=6, maxAttempts=100)
if program is None:
return None
task = self.featureExtractor.taskOfProgram(program, request)
if statusUpdate is not None:
flushEverything()
if task is None:
return None
if hasattr(self.featureExtractor, 'lexicon'):
if self.featureExtractor.tokenize(task.examples) is None:
return None
ll = self.generativeModel.logLikelihood(request, program)
frontier = Frontier([FrontierEntry(program=program,
logLikelihood=0., logPrior=ll)],
task=task)
return frontier
def sampleManyHelmholtz(self, requests, N, CPUs):
eprint("Sampling %d programs from the prior on %d CPUs..." % (N, CPUs))
flushEverything()
frequency = N / 50
startingSeed = random.random()
# Sequentially for ensemble training.
samples = [self.sampleHelmholtz(requests,
statusUpdate='.' if n % frequency == 0 else None,
seed=startingSeed + n) for n in range(N)]
# (cathywong) Disabled for ensemble training.
# samples = parallelMap(
# 1,
# lambda n: self.sampleHelmholtz(requests,
# statusUpdate='.' if n % frequency == 0 else None,
# seed=startingSeed + n),
# range(N))
eprint()
flushEverything()
samples = [z for z in samples if z is not None]
eprint()
eprint("Got %d/%d valid samples." % (len(samples), N))
flushEverything()
return samples
def enumerateFrontiers(self,
tasks,
enumerationTimeout=None,
testing=False,
solver=None,
CPUs=1,
frontierSize=None,
maximumFrontier=None,
evaluationTimeout=None):
with timing("Evaluated recognition model"):
grammars = {task: self.grammarOfTask(task)
for task in tasks}
#untorch seperately to make sure you filter out None grammars
grammars = {task: grammar.untorch() for task, grammar in grammars.items() if grammar is not None}
return multicoreEnumeration(grammars, tasks,
testing=testing,
solver=solver,
enumerationTimeout=enumerationTimeout,
CPUs=CPUs, maximumFrontier=maximumFrontier,
evaluationTimeout=evaluationTimeout)
class RecurrentFeatureExtractor(nn.Module):
def __init__(self, _=None,
tasks=None,
cuda=False,
# what are the symbols that can occur in the inputs and
# outputs
lexicon=None,
# how many hidden units
H=32,
# Should the recurrent units be bidirectional?
bidirectional=False,
# What should be the timeout for trying to construct Helmholtz tasks?
helmholtzTimeout=0.25,
# What should be the timeout for running a Helmholtz program?
helmholtzEvaluationTimeout=0.01):
super(RecurrentFeatureExtractor, self).__init__()
assert tasks is not None, "You must provide a list of all of the tasks, both those that have been hit and those that have not been hit. Input examples are sampled from these tasks."
# maps from a requesting type to all of the inputs that we ever saw with that request
self.requestToInputs = {
tp: [list(map(fst, t.examples)) for t in tasks if t.request == tp ]
for tp in {t.request for t in tasks}
}
inputTypes = {t
for task in tasks
for t in task.request.functionArguments()}
# maps from a type to all of the inputs that we ever saw having that type
self.argumentsWithType = {
tp: [ x
for t in tasks
for xs,_ in t.examples
for tpp, x in zip(t.request.functionArguments(), xs)
if tpp == tp]
for tp in inputTypes
}
self.requestToNumberOfExamples = {
tp: [ len(t.examples)
for t in tasks if t.request == tp ]
for tp in {t.request for t in tasks}
}
self.helmholtzTimeout = helmholtzTimeout
self.helmholtzEvaluationTimeout = helmholtzEvaluationTimeout
self.parallelTaskOfProgram = True
assert lexicon
self.specialSymbols = [
"STARTING", # start of entire sequence
"ENDING", # ending of entire sequence
"STARTOFOUTPUT", # begins the start of the output
"ENDOFINPUT" # delimits the ending of an input - we might have multiple inputs
]
lexicon += self.specialSymbols
encoder = nn.Embedding(len(lexicon), H)
self.encoder = encoder
self.H = H
self.bidirectional = bidirectional
layers = 1
model = nn.GRU(H, H, layers, bidirectional=bidirectional)
self.model = model
self.use_cuda = cuda
self.lexicon = lexicon
self.symbolToIndex = {
symbol: index for index,
symbol in enumerate(lexicon)}
self.startingIndex = self.symbolToIndex["STARTING"]
self.endingIndex = self.symbolToIndex["ENDING"]
self.startOfOutputIndex = self.symbolToIndex["STARTOFOUTPUT"]
self.endOfInputIndex = self.symbolToIndex["ENDOFINPUT"]
# Maximum number of inputs/outputs we will run the recognition
# model on per task
# This is an optimization hack
self.MAXINPUTS = 100
if cuda: self.cuda()
@property
def outputDimensionality(self): return self.H
# modify examples before forward (to turn them into iterables of lexicon)
# you should override this if needed
def tokenize(self, x): return x
def symbolEmbeddings(self):
return {s: self.encoder(variable([self.symbolToIndex[s]])).squeeze(
0).data.cpu().numpy() for s in self.lexicon if not (s in self.specialSymbols)}
def packExamples(self, examples):
"""IMPORTANT! xs must be sorted in decreasing order of size because pytorch is stupid"""
es = []
sizes = []
for xs, y in examples:
e = [self.startingIndex]
for x in xs:
for s in x:
e.append(self.symbolToIndex[s])
e.append(self.endOfInputIndex)
e.append(self.startOfOutputIndex)
for s in y:
e.append(self.symbolToIndex[s])
e.append(self.endingIndex)
if es != []:
assert len(e) <= len(es[-1]), \
"Examples must be sorted in decreasing order of their tokenized size. This should be transparently handled in recognition.py, so if this assertion fails it isn't your fault as a user of EC but instead is a bug inside of EC."
es.append(e)
sizes.append(len(e))
m = max(sizes)
# padding
for j, e in enumerate(es):
es[j] += [self.endingIndex] * (m - len(e))
x = variable(es, cuda=self.use_cuda)
x = self.encoder(x)
# x: (batch size, maximum length, E)
x = x.permute(1, 0, 2)
# x: TxBxE
x = pack_padded_sequence(x, sizes)
return x, sizes
def examplesEncoding(self, examples):
examples = sorted(examples, key=lambda xs_y: sum(
len(z) + 1 for z in xs_y[0]) + len(xs_y[1]), reverse=True)
x, sizes = self.packExamples(examples)
outputs, hidden = self.model(x)
# outputs, sizes = pad_packed_sequence(outputs)
# I don't know whether to return the final output or the final hidden
# activations...
return hidden[0, :, :] + hidden[1, :, :]
def forward(self, examples):
tokenized = self.tokenize(examples)
if not tokenized:
return None
if hasattr(self, 'MAXINPUTS') and len(tokenized) > self.MAXINPUTS:
tokenized = list(tokenized)
random.shuffle(tokenized)
tokenized = tokenized[:self.MAXINPUTS]
e = self.examplesEncoding(tokenized)
# max pool
# e,_ = e.max(dim = 0)
# take the average activations across all of the examples
# I think this might be better because we might be testing on data
# which has far more o far fewer examples then training
e = e.mean(dim=0)
return e
def featuresOfTask(self, t):
if hasattr(self, 'useFeatures'):
f = self(t.features)
else:
# Featurize the examples directly.
f = self(t.examples)
return f
def taskOfProgram(self, p, tp):
# half of the time we randomly mix together inputs
# this gives better generalization on held out tasks
# the other half of the time we train on sets of inputs in the training data
# this gives better generalization on unsolved training tasks
if random.random() < 0.5:
def randomInput(t): return random.choice(self.argumentsWithType[t])
# Loop over the inputs in a random order and pick the first ones that
# doesn't generate an exception
startTime = time.time()
examples = []
while True:
# TIMEOUT! this must not be a very good program
if time.time() - startTime > self.helmholtzTimeout: return None
# Grab some random inputs
xs = [randomInput(t) for t in tp.functionArguments()]
try:
y = runWithTimeout(lambda: p.runWithArguments(xs), self.helmholtzEvaluationTimeout)
examples.append((tuple(xs),y))
if len(examples) >= random.choice(self.requestToNumberOfExamples[tp]):
return Task("Helmholtz", tp, examples)
except: continue
else:
candidateInputs = list(self.requestToInputs[tp])
random.shuffle(candidateInputs)
for xss in candidateInputs:
ys = []
for xs in xss:
try: y = runWithTimeout(lambda: p.runWithArguments(xs), self.helmholtzEvaluationTimeout)
except: break
ys.append(y)
if len(ys) == len(xss):
return Task("Helmholtz", tp, list(zip(xss, ys)))
return None
class LowRank(nn.Module):
"""
Module that outputs a rank R matrix of size m by n from input of size i.
"""
def __init__(self, i, m, n, r):
"""
i: input dimension
m: output rows
n: output columns
r: maximum rank. if this is None then the output will be full-rank
"""
super(LowRank, self).__init__()
self.m = m
self.n = n
maximumPossibleRank = min(m, n)
if r is None: r = maximumPossibleRank
if r < maximumPossibleRank:
self.factored = True
self.A = nn.Linear(i, m*r)
self.B = nn.Linear(i, n*r)
self.r = r
else:
self.factored = False
self.M = nn.Linear(i, m*n)
def forward(self, x):
sz = x.size()
if len(sz) == 1:
B = 1
x = x.unsqueeze(0)
needToSqueeze = True
elif len(sz) == 2:
B = sz[0]
needToSqueeze = False
else:
assert False, "LowRank expects either a 1-dimensional tensor or a 2-dimensional tensor"
if self.factored:
a = self.A(x).view(B, self.m, self.r)
b = self.B(x).view(B, self.r, self.n)
y = a @ b
else:
y = self.M(x).view(B, self.m, self.n)
if needToSqueeze:
y = y.squeeze(0)
return y
class DummyFeatureExtractor(nn.Module):
def __init__(self, tasks, testingTasks=[], cuda=False):
super(DummyFeatureExtractor, self).__init__()
self.outputDimensionality = 1
self.recomputeTasks = False
def featuresOfTask(self, t):
return variable([0.]).float()
def featuresOfTasks(self, ts):
return variable([[0.]]*len(ts)).float()
def taskOfProgram(self, p, t):
return Task("dummy task", t, [])
class RandomFeatureExtractor(nn.Module):
def __init__(self, tasks):
super(RandomFeatureExtractor, self).__init__()
self.outputDimensionality = 1
self.recomputeTasks = False
def featuresOfTask(self, t):
return variable([random.random()]).float()
def featuresOfTasks(self, ts):
return variable([[random.random()] for _ in range(len(ts)) ]).float()
def taskOfProgram(self, p, t):
return Task("dummy task", t, [])
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class ImageFeatureExtractor(nn.Module):
def __init__(self, inputImageDimension, resizedDimension=None,
channels=1):
super(ImageFeatureExtractor, self).__init__()
self.resizedDimension = resizedDimension or inputImageDimension
self.inputImageDimension = inputImageDimension
self.channels = channels
def conv_block(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
nn.MaxPool2d(2)
)
# channels for hidden
hid_dim = 64
z_dim = 64
self.encoder = nn.Sequential(
conv_block(channels, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, z_dim),
Flatten()
)
# Each layer of the encoder halves the dimension, except for the last layer which flattens
outputImageDimensionality = self.resizedDimension/(2**(len(self.encoder) - 1))
self.outputDimensionality = int(z_dim*outputImageDimensionality*outputImageDimensionality)
def forward(self, v):
"""1 channel: v: BxWxW or v:WxW
> 1 channel: v: BxCxWxW or v:CxWxW"""
insertBatch = False
variabled = variable(v).float()
if self.channels == 1: # insert channel dimension
if len(variabled.shape) == 3: # batching
variabled = variabled[:,None,:,:]
elif len(variabled.shape) == 2: # no batching
variabled = variabled[None,:,:]
insertBatch = True
else: assert False
else: # expect to have a channel dimension
if len(variabled.shape) == 4:
pass
elif len(variabled.shape) == 3:
insertBatch = True
else: assert False
if insertBatch: variabled = torch.unsqueeze(variabled, 0)
y = self.encoder(variabled)
if insertBatch: y = y[0,:]
return y
class JSONFeatureExtractor(object):
def __init__(self, tasks, cudaFalse):
# self.averages, self.deviations = Task.featureMeanAndStandardDeviation(tasks)
# self.outputDimensionality = len(self.averages)
self.cuda = cuda
self.tasks = tasks
def stringify(self, x):
# No whitespace #maybe kill the seperators
return json.dumps(x, separators=(',', ':'))
def featuresOfTask(self, t):
# >>> t.request to get the type
# >>> t.examples to get input/output examples
# this might actually be okay, because the input should just be nothing
#return [(self.stringify(inputs), self.stringify(output))
# for (inputs, output) in t.examples]
return [(list(output),) for (inputs, output) in t.examples]
|