|
import random |
|
from collections import defaultdict |
|
import json |
|
import math |
|
import os |
|
import datetime |
|
|
|
from dreamcoder.dreamcoder import explorationCompression |
|
from dreamcoder.utilities import eprint, flatten, testTrainSplit |
|
from dreamcoder.grammar import Grammar |
|
from dreamcoder.task import Task |
|
from dreamcoder.type import Context, arrow, tbool, tlist, tint, t0, UnificationFailure |
|
from dreamcoder.domains.list.listPrimitives import basePrimitives, primitives, McCarthyPrimitives, bootstrapTarget_extra, no_length |
|
from dreamcoder.domains.list.makeListTasks import make_list_bootstrap_tasks, sortBootstrap, EASYLISTTASKS |
|
|
|
|
|
def retrieveJSONTasks(filename, features=False): |
|
""" |
|
For JSON of the form: |
|
{"name": str, |
|
"type": {"input" : bool|int|list-of-bool|list-of-int, |
|
"output": bool|int|list-of-bool|list-of-int}, |
|
"examples": [{"i": data, "o": data}]} |
|
""" |
|
with open(filename, "r") as f: |
|
loaded = json.load(f) |
|
TP = { |
|
"bool": tbool, |
|
"int": tint, |
|
"list-of-bool": tlist(tbool), |
|
"list-of-int": tlist(tint), |
|
} |
|
return [Task( |
|
item["name"], |
|
arrow(TP[item["type"]["input"]], TP[item["type"]["output"]]), |
|
[((ex["i"],), ex["o"]) for ex in item["examples"]], |
|
features=(None if not features else list_features( |
|
[((ex["i"],), ex["o"]) for ex in item["examples"]])), |
|
cache=False, |
|
) for item in loaded] |
|
|
|
|
|
def list_features(examples): |
|
if any(isinstance(i, int) for (i,), _ in examples): |
|
|
|
examples = [(([i],), o) for (i,), o in examples] |
|
elif any(not isinstance(i, list) for (i,), _ in examples): |
|
|
|
return [] |
|
elif any(isinstance(x, list) for (xs,), _ in examples for x in xs): |
|
|
|
|
|
examples = [(([x for xs in ys for x in xs],), o) |
|
for (ys,), o in examples] |
|
|
|
|
|
|
|
features = [] |
|
ot = type(examples[0][1]) |
|
|
|
def mean(l): return 0 if not l else sum(l) / len(l) |
|
imean = [mean(i) for (i,), o in examples] |
|
ivar = [sum((v - imean[idx])**2 |
|
for v in examples[idx][0][0]) |
|
for idx in range(len(examples))] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ot == list: |
|
omean = [mean(o) for (i,), o in examples] |
|
ovar = [sum((v - omean[idx])**2 |
|
for v in examples[idx][1]) |
|
for idx in range(len(examples))] |
|
|
|
def cntr( |
|
l, o): return 0 if not l else len( |
|
set(l).difference( |
|
set(o))) / len(l) |
|
cnt_not_in_output = [cntr(i, o) for (i,), o in examples] |
|
|
|
|
|
|
|
features.append(sum(len(i) - len(o) for (i,), o in examples)) |
|
|
|
features.append(sum(cnt_not_in_output)) |
|
features.append(sum(om - im for im, om in zip(imean, omean))) |
|
features.append(sum(ov - iv for iv, ov in zip(ivar, ovar))) |
|
features.append(1) |
|
|
|
|
|
elif ot == bool: |
|
outs = [o for (i,), o in examples] |
|
|
|
|
|
|
|
features.append(sum(len(i) for (i,), o in examples)) |
|
|
|
features.append(0) |
|
features.append(sum(imean)) |
|
features.append(sum(ivar)) |
|
features.append(-1) |
|
|
|
|
|
else: |
|
def cntr( |
|
l, o): return 0 if not l else len( |
|
set(l).difference( |
|
set(o))) / len(l) |
|
cnt_not_in_output = [cntr(i, [o]) for (i,), o in examples] |
|
outs = [o for (i,), o in examples] |
|
|
|
|
|
|
|
features.append(sum(len(i) for (i,), o in examples)) |
|
|
|
features.append(sum(cnt_not_in_output)) |
|
features.append(sum(o - im for im, o in zip(imean, outs))) |
|
features.append(sum(ivar)) |
|
features.append(0) |
|
|
|
|
|
|
|
return features |
|
|
|
|
|
def isListFunction(tp): |
|
try: |
|
Context().unify(tp, arrow(tlist(tint), t0)) |
|
return True |
|
except UnificationFailure: |
|
return False |
|
|
|
|
|
def isIntFunction(tp): |
|
try: |
|
Context().unify(tp, arrow(tint, t0)) |
|
return True |
|
except UnificationFailure: |
|
return False |
|
|
|
try: |
|
from dreamcoder.recognition import RecurrentFeatureExtractor |
|
class LearnedFeatureExtractor(RecurrentFeatureExtractor): |
|
H = 64 |
|
|
|
special = None |
|
|
|
def tokenize(self, examples): |
|
def sanitize(l): return [z if z in self.lexicon else "?" |
|
for z_ in l |
|
for z in (z_ if isinstance(z_, list) else [z_])] |
|
|
|
tokenized = [] |
|
for xs, y in examples: |
|
if isinstance(y, list): |
|
y = ["LIST_START"] + y + ["LIST_END"] |
|
else: |
|
y = [y] |
|
y = sanitize(y) |
|
if len(y) > self.maximumLength: |
|
return None |
|
|
|
serializedInputs = [] |
|
for xi, x in enumerate(xs): |
|
if isinstance(x, list): |
|
x = ["LIST_START"] + x + ["LIST_END"] |
|
else: |
|
x = [x] |
|
x = sanitize(x) |
|
if len(x) > self.maximumLength: |
|
return None |
|
serializedInputs.append(x) |
|
|
|
tokenized.append((tuple(serializedInputs), y)) |
|
|
|
return tokenized |
|
|
|
def __init__(self, tasks, testingTasks=[], cuda=False): |
|
self.lexicon = set(flatten((t.examples for t in tasks + testingTasks), abort=lambda x: isinstance( |
|
x, str))).union({"LIST_START", "LIST_END", "?"}) |
|
|
|
|
|
self.maximumLength = float('inf') |
|
self.maximumLength = max(len(l) |
|
for t in tasks + testingTasks |
|
for xs, y in self.tokenize(t.examples) |
|
for l in [y] + [x for x in xs]) |
|
|
|
self.recomputeTasks = True |
|
|
|
super( |
|
LearnedFeatureExtractor, |
|
self).__init__( |
|
lexicon=list( |
|
self.lexicon), |
|
tasks=tasks, |
|
cuda=cuda, |
|
H=self.H, |
|
bidirectional=True) |
|
except: pass |
|
|
|
def train_necessary(t): |
|
if t.name in {"head", "is-primes", "len", "pop", "repeat-many", "tail", "keep primes", "keep squares"}: |
|
return True |
|
if any(t.name.startswith(x) for x in { |
|
"add-k", "append-k", "bool-identify-geq-k", "count-k", "drop-k", |
|
"empty", "evens", "has-k", "index-k", "is-mod-k", "kth-largest", |
|
"kth-smallest", "modulo-k", "mult-k", "remove-index-k", |
|
"remove-mod-k", "repeat-k", "replace-all-with-index-k", "rotate-k", |
|
"slice-k-n", "take-k", |
|
}): |
|
return "some" |
|
return False |
|
|
|
|
|
def list_options(parser): |
|
parser.add_argument( |
|
"--noMap", action="store_true", default=False, |
|
help="Disable built-in map primitive") |
|
parser.add_argument( |
|
"--noUnfold", action="store_true", default=False, |
|
help="Disable built-in unfold primitive") |
|
parser.add_argument( |
|
"--noLength", action="store_true", default=False, |
|
help="Disable built-in length primitive") |
|
parser.add_argument( |
|
"--dataset", |
|
type=str, |
|
default="Lucas-old", |
|
choices=[ |
|
"bootstrap", |
|
"sorting", |
|
"Lucas-old", |
|
"Lucas-depth1", |
|
"Lucas-depth2", |
|
"Lucas-depth3"]) |
|
parser.add_argument("--maxTasks", type=int, |
|
default=None, |
|
help="truncate tasks to fit within this boundary") |
|
parser.add_argument("--primitives", |
|
default="common", |
|
help="Which primitive set to use", |
|
choices=["McCarthy", "base", "rich", "common", "noLength"]) |
|
parser.add_argument("--extractor", type=str, |
|
choices=["hand", "deep", "learned"], |
|
default="learned") |
|
parser.add_argument("--split", metavar="TRAIN_RATIO", |
|
type=float, |
|
help="split test/train") |
|
parser.add_argument("-H", "--hidden", type=int, |
|
default=64, |
|
help="number of hidden units") |
|
parser.add_argument("--random-seed", type=int, default=17) |
|
|
|
|
|
def main(dataset='Lucas-old', maxTasks=10_000): |
|
""" |
|
Takes the return value of the `commandlineArguments()` function as input and |
|
trains/tests the model on manipulating sequences of numbers. |
|
""" |
|
random.seed(9) |
|
|
|
tasks = { |
|
"Lucas-old": lambda: retrieveJSONTasks("data/list_tasks.json") + sortBootstrap(), |
|
"bootstrap": make_list_bootstrap_tasks, |
|
"sorting": sortBootstrap, |
|
|
|
|
|
|
|
|
|
}[dataset]() |
|
|
|
if maxTasks and len(tasks) > maxTasks: |
|
necessaryTasks = [] |
|
if dataset.startswith("Lucas2.0") and dataset != "Lucas2.0-depth1": |
|
necessaryTasks = tasks[:105] |
|
|
|
eprint("Unwilling to handle {} tasks, truncating..".format(len(tasks))) |
|
random.shuffle(tasks) |
|
del tasks[maxTasks:] |
|
tasks = necessaryTasks + tasks |
|
|
|
if dataset.startswith("Lucas"): |
|
|
|
tasks.extend([ |
|
Task("remove empty lists", |
|
arrow(tlist(tlist(tbool)), tlist(tlist(tbool))), |
|
[((ls,), list(filter(lambda l: len(l) > 0, ls))) |
|
for _ in range(15) |
|
for ls in [[[random.random() < 0.5 for _ in range(random.randint(0, 3))] |
|
for _ in range(4)]]]), |
|
Task("keep squares", |
|
arrow(tlist(tint), tlist(tint)), |
|
[((xs,), list(filter(lambda x: int(math.sqrt(x)) ** 2 == x, |
|
xs))) |
|
for _ in range(15) |
|
for xs in [[random.choice([0, 1, 4, 9, 16, 25]) |
|
if random.random() < 0.5 |
|
else random.randint(0, 9) |
|
for _ in range(7)]]]), |
|
Task("keep primes", |
|
arrow(tlist(tint), tlist(tint)), |
|
[((xs,), list(filter(lambda x: x in {2, 3, 5, 7, 11, 13, 17, |
|
19, 23, 29, 31, 37}, xs))) |
|
for _ in range(15) |
|
for xs in [[random.choice([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]) |
|
if random.random() < 0.5 |
|
else random.randint(0, 9) |
|
for _ in range(7)]]]), |
|
]) |
|
for i in range(4): |
|
tasks.extend([ |
|
Task("keep eq %s" % i, |
|
arrow(tlist(tint), tlist(tint)), |
|
[((xs,), list(filter(lambda x: x == i, xs))) |
|
for _ in range(15) |
|
for xs in [[random.randint(0, 6) for _ in range(5)]]]), |
|
Task("remove eq %s" % i, |
|
arrow(tlist(tint), tlist(tint)), |
|
[((xs,), list(filter(lambda x: x != i, xs))) |
|
for _ in range(15) |
|
for xs in [[random.randint(0, 6) for _ in range(5)]]]), |
|
Task("keep gt %s" % i, |
|
arrow(tlist(tint), tlist(tint)), |
|
[((xs,), list(filter(lambda x: x > i, xs))) |
|
for _ in range(15) |
|
for xs in [[random.randint(0, 6) for _ in range(5)]]]), |
|
Task("remove gt %s" % i, |
|
arrow(tlist(tint), tlist(tint)), |
|
[((xs,), list(filter(lambda x: not x > i, xs))) |
|
for _ in range(15) |
|
for xs in [[random.randint(0, 6) for _ in range(5)]]]) |
|
]) |
|
|
|
def isIdentityTask(t): |
|
return all( len(xs) == 1 and xs[0] == y for xs, y in t.examples ) |
|
eprint("Removed", sum(isIdentityTask(t) for t in tasks), "tasks that were just the identity function") |
|
tasks = [t for t in tasks if not isIdentityTask(t) ] |
|
return tasks |
|
|