dream-coder / dreamcoder /taskBatcher.py
Fraser-Greenlee
add dataset code
3bdb76c
from dreamcoder.utilities import eprint
import random
class DefaultTaskBatcher:
"""Iterates through task batches of the specified size. Defaults to all tasks if taskBatchSize is None."""
def __init__(self):
pass
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
if taskBatchSize is None:
taskBatchSize = len(tasks)
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
start = (taskBatchSize * currIteration) % len(tasks)
end = start + taskBatchSize
taskBatch = (tasks + tasks)[start:end] # Handle wraparound.
return taskBatch
class RandomTaskBatcher:
"""Returns a randomly sampled task batch of the specified size. Defaults to all tasks if taskBatchSize is None."""
def __init__(self):
pass
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
if taskBatchSize is None:
taskBatchSize = len(tasks)
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
return random.sample(tasks, taskBatchSize)
class RandomShuffleTaskBatcher:
"""Randomly shuffles the task batch first, and then iterates through task batches of the specified size like DefaultTaskBatcher.
Reshuffles across iterations - intended as benchmark comparison to test the task ordering."""
def __init__(self, baseSeed=0): self.baseSeed = baseSeed
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
if taskBatchSize is None:
taskBatchSize = len(tasks)
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
# Reshuffles tasks in a fixed way across epochs for reproducibility.
currEpoch = int(int(currIteration * taskBatchSize) / int(len(tasks)))
shuffledTasks = tasks.copy() # Since shuffle works in place.
random.Random(self.baseSeed + currEpoch).shuffle(shuffledTasks)
shuffledTasksWrap = tasks.copy() # Since shuffle works in place.
random.Random(self.baseSeed + currEpoch + 1).shuffle(shuffledTasksWrap)
start = (taskBatchSize * currIteration) % len(shuffledTasks)
end = start + taskBatchSize
taskBatch = (shuffledTasks + shuffledTasksWrap)[start:end] # Wraparound nicely.
return list(set(taskBatch))
class UnsolvedTaskBatcher:
"""At a given epoch, returns only batches of the tasks that have not been solved at least twice"""
def __init__(self):
self.timesSolved = {} # map from task to times that we have solved it
self.start = 0
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
assert taskBatchSize is None, "This batching strategy does not support batch sizes"
for t,f in ec_result.allFrontiers.items():
if f.empty:
self.timesSolved[t] = max(0, self.timesSolved.get(t,0))
else:
self.timesSolved[t] = 1 + self.timesSolved.get(t, 0)
return [t for t in tasks if self.timesSolved.get(t,0) < 2 ]
def entropyRandomBatch(ec_result, tasks, taskBatchSize, randomRatio):
numRandom = int(randomRatio * taskBatchSize)
numEntropy = taskBatchSize - numRandom
eprint("Selecting top %d tasks from the %d overall tasks given lowest entropy." % (taskBatchSize, len(tasks)))
eprint("Will be selecting %d by lowest entropy and %d randomly." %(numEntropy, numRandom))
taskGrammarEntropies = ec_result.recognitionModel.taskGrammarEntropies(tasks)
sortedEntropies = sorted(taskGrammarEntropies.items(), key=lambda x:x[1])
entropyBatch = [task for (task, entropy) in sortedEntropies[:numEntropy]]
randomBatch = random.sample([task for (task, entropy) in sortedEntropies[numEntropy:]], numRandom)
batch = entropyBatch + randomBatch
return batch
def kNearestNeighbors(ec_result, tasks, k, task):
"""Finds the k nearest neighbors in the recognition model logProduction space to a given task."""
import numpy as np
cosDistance = ec_result.recognitionModel.grammarLogProductionDistanceToTask(task, tasks)
argSort = np.argsort(-cosDistance)# Want the greatest similarity.
topK = argSort[:k]
topKTasks = list(np.array(tasks)[topK])
return topKTasks
class RandomkNNTaskBatcher:
"""Chooses a random task and finds the (taskBatchSize - 1) nearest neighbors using the recognition model logits."""
def __init__(self):
pass
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
if taskBatchSize is None:
taskBatchSize = len(tasks)
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
if ec_result.recognitionModel is None:
eprint("No recognition model, falling back on random %d" % taskBatchSize)
return random.sample(tasks, taskBatchSize)
else:
randomTask = random.choice(tasks)
kNN = kNearestNeighbors(ec_result, tasks, taskBatchSize - 1, randomTask)
return [randomTask] + kNN
class RandomLowEntropykNNTaskBatcher:
"""Choose a random task from the 10 unsolved with the lowest entropy, and finds the (taskBatchSize - 1) nearest neighbors using the recognition model logits."""
def __init__(self):
pass
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
unsolvedTasks = [t for t in tasks if ec_result.allFrontiers[t].empty]
if taskBatchSize is None:
return unsolvedTasks
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
if ec_result.recognitionModel is None:
eprint("No recognition model, falling back on random %d tasks from the remaining %d" %(taskBatchSize, len(unsolvedTasks)))
return random.sample(unsolvedTasks, taskBatchSize)
else:
lowEntropyUnsolved = entropyRandomBatch(ec_result, unsolvedTasks, taskBatchSize, randomRatio=0)
randomTask = random.choice(lowEntropyUnsolved)
kNN = kNearestNeighbors(ec_result, tasks, taskBatchSize - 1, randomTask)
return [randomTask] + kNN
class UnsolvedEntropyTaskBatcher:
"""Returns tasks that have never been solved at any previous iteration.
Given a task batch size, returns the unsolved tasks with the lowest entropy."""
def __init__(self):
pass
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
unsolvedTasks = [t for t in tasks if ec_result.allFrontiers[t].empty]
if taskBatchSize is None:
return unsolvedTasks
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
if ec_result.recognitionModel is None:
eprint("No recognition model, falling back on random %d tasks from the remaining %d" %(taskBatchSize, len(unsolvedTasks)))
return random.sample(unsolvedTasks, taskBatchSize)
else:
return entropyRandomBatch(ec_result, unsolvedTasks, taskBatchSize, randomRatio=0)
class UnsolvedRandomEntropyTaskBatcher:
"""Returns tasks that have never been solved at any previous iteration.
Given a task batch size, returns a mix of unsolved tasks with percentRandom
selected randomly and the remaining selected by lowest entropy."""
def __init__(self):
pass
def getTaskBatch(self, ec_result, tasks, taskBatchSize, currIteration):
unsolvedTasks = [t for t in tasks if ec_result.allFrontiers[t].empty]
if taskBatchSize is None:
return unsolvedTasks
elif taskBatchSize > len(tasks):
eprint("Task batch size is greater than total number of tasks, aborting.")
assert False
if ec_result.recognitionModel is None:
eprint("No recognition model, falling back on random %d tasks from the remaining %d" %(taskBatchSize, len(unsolvedTasks)))
return random.sample(unsolvedTasks, taskBatchSize)
else:
return entropyRandomBatch(ec_result, unsolvedTasks, taskBatchSize, randomRatio=.5)