import random from collections import defaultdict import json import math import os import datetime from dreamcoder.dreamcoder import explorationCompression from dreamcoder.utilities import eprint, flatten, testTrainSplit from dreamcoder.grammar import Grammar from dreamcoder.task import Task from dreamcoder.type import Context, arrow, tbool, tlist, tint, t0, UnificationFailure from dreamcoder.domains.list.listPrimitives import basePrimitives, primitives, McCarthyPrimitives, bootstrapTarget_extra, no_length from dreamcoder.domains.list.makeListTasks import make_list_bootstrap_tasks, sortBootstrap, EASYLISTTASKS def retrieveJSONTasks(filename, features=False): """ For JSON of the form: {"name": str, "type": {"input" : bool|int|list-of-bool|list-of-int, "output": bool|int|list-of-bool|list-of-int}, "examples": [{"i": data, "o": data}]} """ with open(filename, "r") as f: loaded = json.load(f) TP = { "bool": tbool, "int": tint, "list-of-bool": tlist(tbool), "list-of-int": tlist(tint), } return [Task( item["name"], arrow(TP[item["type"]["input"]], TP[item["type"]["output"]]), [((ex["i"],), ex["o"]) for ex in item["examples"]], features=(None if not features else list_features( [((ex["i"],), ex["o"]) for ex in item["examples"]])), cache=False, ) for item in loaded] def list_features(examples): if any(isinstance(i, int) for (i,), _ in examples): # obtain features for number inputs as list of numbers examples = [(([i],), o) for (i,), o in examples] elif any(not isinstance(i, list) for (i,), _ in examples): # can't handle non-lists return [] elif any(isinstance(x, list) for (xs,), _ in examples for x in xs): # nested lists are hard to extract features for, so we'll # obtain features as if flattened examples = [(([x for xs in ys for x in xs],), o) for (ys,), o in examples] # assume all tasks have the same number of examples # and all inputs are lists features = [] ot = type(examples[0][1]) def mean(l): return 0 if not l else sum(l) / len(l) imean = [mean(i) for (i,), o in examples] ivar = [sum((v - imean[idx])**2 for v in examples[idx][0][0]) for idx in range(len(examples))] # DISABLED length of each input and output # total difference between length of input and output # DISABLED normalized count of numbers in input but not in output # total normalized count of numbers in input but not in output # total difference between means of input and output # total difference between variances of input and output # output type (-1=bool, 0=int, 1=list) # DISABLED outputs if integers, else -1s # DISABLED outputs if bools (-1/1), else 0s if ot == list: # lists of ints or bools omean = [mean(o) for (i,), o in examples] ovar = [sum((v - omean[idx])**2 for v in examples[idx][1]) for idx in range(len(examples))] def cntr( l, o): return 0 if not l else len( set(l).difference( set(o))) / len(l) cnt_not_in_output = [cntr(i, o) for (i,), o in examples] #features += [len(i) for (i,), o in examples] #features += [len(o) for (i,), o in examples] features.append(sum(len(i) - len(o) for (i,), o in examples)) #features += cnt_not_int_output features.append(sum(cnt_not_in_output)) features.append(sum(om - im for im, om in zip(imean, omean))) features.append(sum(ov - iv for iv, ov in zip(ivar, ovar))) features.append(1) # features += [-1 for _ in examples] # features += [0 for _ in examples] elif ot == bool: outs = [o for (i,), o in examples] #features += [len(i) for (i,), o in examples] #features += [-1 for _ in examples] features.append(sum(len(i) for (i,), o in examples)) #features += [0 for _ in examples] features.append(0) features.append(sum(imean)) features.append(sum(ivar)) features.append(-1) # features += [-1 for _ in examples] # features += [1 if o else -1 for o in outs] else: # int def cntr( l, o): return 0 if not l else len( set(l).difference( set(o))) / len(l) cnt_not_in_output = [cntr(i, [o]) for (i,), o in examples] outs = [o for (i,), o in examples] #features += [len(i) for (i,), o in examples] #features += [1 for (i,), o in examples] features.append(sum(len(i) for (i,), o in examples)) #features += cnt_not_int_output features.append(sum(cnt_not_in_output)) features.append(sum(o - im for im, o in zip(imean, outs))) features.append(sum(ivar)) features.append(0) # features += outs # features += [0 for _ in examples] return features def isListFunction(tp): try: Context().unify(tp, arrow(tlist(tint), t0)) return True except UnificationFailure: return False def isIntFunction(tp): try: Context().unify(tp, arrow(tint, t0)) return True except UnificationFailure: return False try: from dreamcoder.recognition import RecurrentFeatureExtractor class LearnedFeatureExtractor(RecurrentFeatureExtractor): H = 64 special = None def tokenize(self, examples): def sanitize(l): return [z if z in self.lexicon else "?" for z_ in l for z in (z_ if isinstance(z_, list) else [z_])] tokenized = [] for xs, y in examples: if isinstance(y, list): y = ["LIST_START"] + y + ["LIST_END"] else: y = [y] y = sanitize(y) if len(y) > self.maximumLength: return None serializedInputs = [] for xi, x in enumerate(xs): if isinstance(x, list): x = ["LIST_START"] + x + ["LIST_END"] else: x = [x] x = sanitize(x) if len(x) > self.maximumLength: return None serializedInputs.append(x) tokenized.append((tuple(serializedInputs), y)) return tokenized def __init__(self, tasks, testingTasks=[], cuda=False): self.lexicon = set(flatten((t.examples for t in tasks + testingTasks), abort=lambda x: isinstance( x, str))).union({"LIST_START", "LIST_END", "?"}) # Calculate the maximum length self.maximumLength = float('inf') # Believe it or not this is actually important to have here self.maximumLength = max(len(l) for t in tasks + testingTasks for xs, y in self.tokenize(t.examples) for l in [y] + [x for x in xs]) self.recomputeTasks = True super( LearnedFeatureExtractor, self).__init__( lexicon=list( self.lexicon), tasks=tasks, cuda=cuda, H=self.H, bidirectional=True) except: pass def train_necessary(t): if t.name in {"head", "is-primes", "len", "pop", "repeat-many", "tail", "keep primes", "keep squares"}: return True if any(t.name.startswith(x) for x in { "add-k", "append-k", "bool-identify-geq-k", "count-k", "drop-k", "empty", "evens", "has-k", "index-k", "is-mod-k", "kth-largest", "kth-smallest", "modulo-k", "mult-k", "remove-index-k", "remove-mod-k", "repeat-k", "replace-all-with-index-k", "rotate-k", "slice-k-n", "take-k", }): return "some" return False def list_options(parser): parser.add_argument( "--noMap", action="store_true", default=False, help="Disable built-in map primitive") parser.add_argument( "--noUnfold", action="store_true", default=False, help="Disable built-in unfold primitive") parser.add_argument( "--noLength", action="store_true", default=False, help="Disable built-in length primitive") parser.add_argument( "--dataset", type=str, default="Lucas-old", choices=[ "bootstrap", "sorting", "Lucas-old", "Lucas-depth1", "Lucas-depth2", "Lucas-depth3"]) parser.add_argument("--maxTasks", type=int, default=None, help="truncate tasks to fit within this boundary") parser.add_argument("--primitives", default="common", help="Which primitive set to use", choices=["McCarthy", "base", "rich", "common", "noLength"]) parser.add_argument("--extractor", type=str, choices=["hand", "deep", "learned"], default="learned") parser.add_argument("--split", metavar="TRAIN_RATIO", type=float, help="split test/train") parser.add_argument("-H", "--hidden", type=int, default=64, help="number of hidden units") parser.add_argument("--random-seed", type=int, default=17) def main(dataset='Lucas-old', maxTasks=10_000): """ Takes the return value of the `commandlineArguments()` function as input and trains/tests the model on manipulating sequences of numbers. """ random.seed(9) tasks = { "Lucas-old": lambda: retrieveJSONTasks("data/list_tasks.json") + sortBootstrap(), "bootstrap": make_list_bootstrap_tasks, "sorting": sortBootstrap, # removed as file over 10MB # "Lucas-depth1": lambda: retrieveJSONTasks("data/list_tasks2.json")[:105], # "Lucas-depth2": lambda: retrieveJSONTasks("data/list_tasks2.json")[:4928], # "Lucas-depth3": lambda: retrieveJSONTasks("data/list_tasks2.json"), }[dataset]() if maxTasks and len(tasks) > maxTasks: necessaryTasks = [] # maxTasks will not consider these if dataset.startswith("Lucas2.0") and dataset != "Lucas2.0-depth1": necessaryTasks = tasks[:105] eprint("Unwilling to handle {} tasks, truncating..".format(len(tasks))) random.shuffle(tasks) del tasks[maxTasks:] tasks = necessaryTasks + tasks if dataset.startswith("Lucas"): # extra tasks for filter tasks.extend([ Task("remove empty lists", arrow(tlist(tlist(tbool)), tlist(tlist(tbool))), [((ls,), list(filter(lambda l: len(l) > 0, ls))) for _ in range(15) for ls in [[[random.random() < 0.5 for _ in range(random.randint(0, 3))] for _ in range(4)]]]), Task("keep squares", arrow(tlist(tint), tlist(tint)), [((xs,), list(filter(lambda x: int(math.sqrt(x)) ** 2 == x, xs))) for _ in range(15) for xs in [[random.choice([0, 1, 4, 9, 16, 25]) if random.random() < 0.5 else random.randint(0, 9) for _ in range(7)]]]), Task("keep primes", arrow(tlist(tint), tlist(tint)), [((xs,), list(filter(lambda x: x in {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}, xs))) for _ in range(15) for xs in [[random.choice([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]) if random.random() < 0.5 else random.randint(0, 9) for _ in range(7)]]]), ]) for i in range(4): tasks.extend([ Task("keep eq %s" % i, arrow(tlist(tint), tlist(tint)), [((xs,), list(filter(lambda x: x == i, xs))) for _ in range(15) for xs in [[random.randint(0, 6) for _ in range(5)]]]), Task("remove eq %s" % i, arrow(tlist(tint), tlist(tint)), [((xs,), list(filter(lambda x: x != i, xs))) for _ in range(15) for xs in [[random.randint(0, 6) for _ in range(5)]]]), Task("keep gt %s" % i, arrow(tlist(tint), tlist(tint)), [((xs,), list(filter(lambda x: x > i, xs))) for _ in range(15) for xs in [[random.randint(0, 6) for _ in range(5)]]]), Task("remove gt %s" % i, arrow(tlist(tint), tlist(tint)), [((xs,), list(filter(lambda x: not x > i, xs))) for _ in range(15) for xs in [[random.randint(0, 6) for _ in range(5)]]]) ]) def isIdentityTask(t): return all( len(xs) == 1 and xs[0] == y for xs, y in t.examples ) eprint("Removed", sum(isIdentityTask(t) for t in tasks), "tasks that were just the identity function") tasks = [t for t in tasks if not isIdentityTask(t) ] return tasks