File size: 4,025 Bytes
b4eb640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642071a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4eb640
 
642071a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
dataset_info:
  features:
  - name: id
    dtype: int64
  - name: text
    dtype: string
  - name: metadata
    dtype: string
  - name: region_main_id
    dtype: int64
  - name: region_main
    dtype: string
  - name: region_sub_id
    dtype: int64
  - name: region_sub
    dtype: string
  - name: date_str
    dtype: string
  - name: date_min
    dtype: float64
  - name: date_max
    dtype: float64
  - name: date_circa
    dtype: float64
  - name: last_digit
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 52821262
    num_examples: 70682
  - name: validation
    num_bytes: 6688781
    num_examples: 8751
  - name: test
    num_bytes: 6514866
    num_examples: 8769
  download_size: 30227497
  dataset_size: 66024909
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: apache-2.0
tags:
- ancient languages
size_categories:
- 10K<n<100K
---
# Dataset Card for I.PHI

<!-- Provide a quick summary of the dataset. -->

This is the I.PHI dataset from the Nature article *"[Restoring and attributing ancient texts using deep neural networks](https://www.nature.com/articles/s41586-022-04448-z)"*.
I.PHI contains geographical and chronological metadata for a cleaned subset of the [Packard Humanities Institute](https://inscriptions.packhum.org/) database of ancient Greek inscriptions.
## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** Thea Sommerschield\*, Yannis Assael\*, Brendan Shillingford, Mahyar Bordbar, John Pavlopoulos, Marita Chatzipanagiotou, Ion Androutsopoulos, Jonathan Prag, Nando de Freitas
- **Shared by:** George Baker
- **Language(s) (NLP):** Ancient and Byzantine Greek
- **License:** Apache 2.0

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Repository:** [github.com/sommerschield/iphi](https://github.com/sommerschield/iphi)
- **Paper:** [Restoring and attributing ancient texts using deep neural networks](https://www.nature.com/articles/s41586-022-04448-z)

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

I.PHI contains data for chronological attribution (dating), geographical attribution, and text restoration of Ancient and Byzantine Greek inscriptions.


#### Data Collection and Processing

Duplicate inscriptions and inscriptions with fewer than 50 characters are dropped.

Note: this version contains slightly more examples than the number reported in the original article (70,682/8,751/8,769 instead of 63,014/7,783/7,811). This is likely due to additions to the [Packard Humanities Institute](https://inscriptions.packhum.org/) database from which the dataset is sourced. 

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
  @misc{sommerschield2021iphi,
    title={{I.PHI} dataset: ancient Greek inscriptions},
    author={Sommerschield*, Thea and Assael*, Yannis and Shillingford, Brendan and Bordbar, Mahyar and Pavlopoulos, John and Chatzipanagiotou, Marita and Androutsopoulos, Ion and Prag, Jonathan and de Freitas, Nando},
    howpublished = {\url{https://github.com/sommerschield/iphi}},
    year={2021}
  }

  @article{assael2022restoring,
    title={Restoring and attributing ancient texts using deep neural networks},
    author={Assael, Yannis and Sommerschield, Thea and Shillingford, Brendan and Bordbar, Mahyar and Pavlopoulos, John and Chatzipanagiotou, Marita and Androutsopoulos, Ion and Prag, Jonathan and de Freitas, Nando},
    journal={Nature},
    volume={603},
    number={7900},
    pages={280--283},
    year={2022},
    publisher={Nature Publishing Group UK London}
  }
```


## Dataset Card Authors

This dataset card was written by George Baker.

## Dataset Card Contact

george (dot) baker (at) colorado (dot) edu