Datasets:
GEM
/

Tasks:
Other
Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
chandrab commited on
Commit
0c60eaa
1 Parent(s): c2c626e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -163
README.md CHANGED
@@ -1,163 +0,0 @@
1
- {
2
- "overview": {
3
- "where": {
4
- "has-leaderboard": "no",
5
- "leaderboard-url": "N/A",
6
- "leaderboard-description": "N/A",
7
- "website": "http://abductivecommonsense.xyz/",
8
- "data-url": "https://storage.googleapis.com/ai2-mosaic/public/abductive-commonsense-reasoning-iclr2020/anlg.zip",
9
- "paper-url": "https://openreview.net/pdf?id=Byg1v1HKDB",
10
- "paper-bibtext": "@inproceedings{\nBhagavatula2020Abductive,\ntitle={Abductive Commonsense Reasoning},\nauthor={Chandra Bhagavatula and Ronan Le Bras and Chaitanya Malaviya and Keisuke Sakaguchi and Ari Holtzman and Hannah Rashkin and Doug Downey and Wen-tau Yih and Yejin Choi},\nbooktitle={International Conference on Learning Representations},\nyear={2020},\nurl={https://openreview.net/forum?id=Byg1v1HKDB}\n}",
11
- "contact-name": "Chandra Bhagavatulla",
12
- "contact-email": "[email protected]"
13
- },
14
- "languages": {
15
- "is-multilingual": "no",
16
- "license": "apache-2.0: Apache License 2.0",
17
- "task-other": "N/A",
18
- "language-names": [
19
- "English"
20
- ],
21
- "language-speakers": "Crowdworkers on the Amazon Mechanical Turk platform based in the U.S, Canada, U.K and Australia. ",
22
- "intended-use": "To study the viability of language-based abductive reasoning. Training and evaluating models to generate a plausible hypothesis to explain two given observations.",
23
- "license-other": "N/A",
24
- "task": "Reasoning"
25
- },
26
- "credit": {
27
- "organization-type": [
28
- "industry"
29
- ],
30
- "organization-names": "Allen Institute for AI",
31
- "creators": "Chandra Bhagavatula (AI2), Ronan Le Bras (AI2), Chaitanya Malaviya (AI2), Keisuke Sakaguchi (AI2), Ari Holtzman (AI2, UW), Hannah Rashkin (AI2, UW), Doug Downey (AI2), Wen-tau Yih (AI2), Yejin Choi (AI2, UW)",
32
- "funding": "Allen Institute for AI",
33
- "gem-added-by": "Chandra Bhagavatula (AI2), Ronan LeBras (AI2), Aman Madaan (CMU), Nico Daheim (RWTH Aachen University)"
34
- },
35
- "structure": {
36
- "data-fields": "- observation_1: A string describing an observation / event.\n- observation_2: A string describing an observation / event.\n- label: A string that plausibly explains why observation_1 and observation_2 might have happened.",
37
- "structure-labels": "Explanations were authored by crowdworkers on the Amazon Mechanical Turk platform using a custom template designed by the creators of the dataset.",
38
- "structure-example": "{\n'gem_id': 'GEM-ART-validation-0',\n'observation_1': 'Stephen was at a party.',\n'observation_2': 'He checked it but it was completely broken.',\n'label': 'Stephen knocked over a vase while drunk.'\n}",
39
- "structure-splits": "- train: Consists of training instances. \n- dev: Consists of dev instances.\n- test: Consists of test instances.\n"
40
- }
41
- },
42
- "gem": {
43
- "rationale": {
44
- "contribution": "Abductive reasoning is a crucial capability of humans and ART is the first dataset curated to study language-based abductive reasoning.",
45
- "sole-task-dataset": "no",
46
- "distinction-description": "N/A",
47
- "model-ability": "Whether models can reason abductively about a given pair of observations."
48
- },
49
- "curation": {
50
- "has-additional-curation": "no",
51
- "modification-types": [],
52
- "modification-description": "N/A",
53
- "has-additional-splits": "no",
54
- "additional-splits-description": "N/A",
55
- "additional-splits-capacicites": "N/A"
56
- },
57
- "starting": {
58
- "research-pointers": "- Paper: https://arxiv.org/abs/1908.05739\n- Code: https://github.com/allenai/abductive-commonsense-reasoning"
59
- }
60
- },
61
- "results": {
62
- "results": {
63
- "model-abilities": "Whether models can reason abductively about a given pair of observations.",
64
- "metrics": [
65
- "BLEU",
66
- "BERT-Score",
67
- "ROUGE"
68
- ],
69
- "other-metrics-definitions": "N/A",
70
- "has-previous-results": "no",
71
- "current-evaluation": "N/A",
72
- "previous-results": "N/A"
73
- }
74
- },
75
- "curation": {
76
- "original": {
77
- "is-aggregated": "no",
78
- "aggregated-sources": "N/A"
79
- },
80
- "language": {
81
- "obtained": [
82
- "Crowdsourced"
83
- ],
84
- "found": [],
85
- "crowdsourced": [
86
- "Amazon Mechanical Turk"
87
- ],
88
- "created": "N/A",
89
- "machine-generated": "N/A",
90
- "producers-description": "Language producers were English speakers in U.S., Canada, U.K and Australia.",
91
- "topics": "No",
92
- "validated": "validated by crowdworker",
93
- "pre-processed": "N/A",
94
- "is-filtered": "algorithmically",
95
- "filtered-criteria": "Adversarial filtering algorithm as described in the paper: https://arxiv.org/abs/1908.05739"
96
- },
97
- "annotations": {
98
- "origin": "automatically created",
99
- "rater-number": "N/A",
100
- "rater-qualifications": "N/A",
101
- "rater-training-num": "N/A",
102
- "rater-test-num": "N/A",
103
- "rater-annotation-service-bool": "no",
104
- "rater-annotation-service": [],
105
- "values": "Each observation is associated with a list of COMET (https://arxiv.org/abs/1906.05317) inferences.",
106
- "quality-control": "none",
107
- "quality-control-details": "N/A"
108
- },
109
- "consent": {
110
- "has-consent": "no",
111
- "consent-policy": "N/A",
112
- "consent-other": "N/A"
113
- },
114
- "pii": {
115
- "has-pii": "no PII",
116
- "no-pii-justification": "The dataset contains day-to-day events. It does not contain names, emails, addresses etc. ",
117
- "pii-categories": [],
118
- "is-pii-identified": "N/A",
119
- "pii-identified-method": "N/A",
120
- "is-pii-replaced": "N/A",
121
- "pii-replaced-method": "N/A"
122
- },
123
- "maintenance": {
124
- "has-maintenance": "no",
125
- "description": "N/A",
126
- "contact": "N/A",
127
- "contestation-mechanism": "N/A",
128
- "contestation-link": "N/A",
129
- "contestation-description": "N/A"
130
- }
131
- },
132
- "context": {
133
- "previous": {
134
- "is-deployed": "no",
135
- "described-risks": "N/A",
136
- "changes-from-observation": "N/A"
137
- },
138
- "underserved": {
139
- "helps-underserved": "no",
140
- "underserved-description": "N/A"
141
- },
142
- "biases": {
143
- "has-biases": "no",
144
- "bias-analyses": "N/A"
145
- }
146
- },
147
- "considerations": {
148
- "pii": {
149
- "risks-description": "None"
150
- },
151
- "licenses": {
152
- "dataset-restrictions": [
153
- "public domain"
154
- ],
155
- "dataset-restrictions-other": "N/A",
156
- "data-copyright": [
157
- "public domain"
158
- ],
159
- "data-copyright-other": "N/A"
160
- },
161
- "limitations": {}
162
- }
163
- }