File size: 3,606 Bytes
278a858 5cd48c5 278a858 5cd48c5 278a858 9352866 278a858 727fcd0 278a858 727fcd0 278a858 727fcd0 278a858 727fcd0 278a858 727fcd0 278a858 727fcd0 278a858 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
""" Script to prepare the SQuAD2.0 data to the GEM format
@author: AbinayaM02
"""
# Import libraries
import json
import pandas as pd
from sklearn.model_selection import train_test_split
# Function to generate gem id
def add_gem_id(data: dict, split: str) -> dict:
"""
Add gem id for each of the datapoint in the dataset.
Parameters:
-----------
data: dict,
data.
split: str,
split of data (train, test or validation).
Returns:
--------
dict
dictionary with updated id
"""
gem_id = -1
generated_data = {"data": []}
id_list =[]
for example in data:
title = example["title"]
for paragraph in example["paragraphs"]:
context = paragraph["context"] # do not strip leading blank spaces GH-2585
for qa in paragraph["qas"]:
temp_dict = {}
question = qa["question"]
qa_id = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"] for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
gem_id += 1
temp_dict["id"] = qa_id
temp_dict["gem_id"] = f"gem-squad_v2-{split}-{gem_id}"
temp_dict["title"] = title
temp_dict["context"] = context
temp_dict["question"] = question
temp_dict["answers"] = {
"answer_start": answer_starts,
"text": answers,
}
generated_data["data"].append(temp_dict)
return generated_data
# Function to split data
def split_data(file_name: str, data_type: str) -> (dict, dict):
"""
Method to split the data specific to SQuAD2.0
Parameters:
-----------
file_name: str,
name of the file.
data_type: str,
type of the data file.
Returns:
--------
(dict, dict)
split of data
"""
if data_type == "json":
with open(file_name, 'r') as json_file:
data = json.load(json_file)["data"]
json_file.close()
# split the data into train and test
# 90% train data 10% test data
train, test = train_test_split(data, train_size=0.9, random_state = 42)
return(train, test)
# Function to save json file
def save_json(data: dict, file_name: str):
"""
Method to save the json file.
Parameters:
----------
data: dict,
data to be saved in file.
file_name: str,
name of the file.
Returns:
--------
None
"""
# save the split
with open(file_name, "w") as data_file:
json.dump(data, data_file, indent = 2)
data_file.close()
if __name__ == "__main__":
# split the train data
train, test = split_data("squad_data/train-v2.0.json", "json")
# add gem id to train split
train = add_gem_id(train, "train")
# save the train split
save_json(train, "train.json")
# add gem id to test split
test = add_gem_id(test, "test")
# save the test split
save_json(test, "test.json")
# load validation data
with open("squad_data/dev-v2.0.json", "r") as dev_file:
validation = json.load(dev_file)["data"]
dev_file.close()
# add gem id and save valid.json
validation = add_gem_id(validation, "validation")
save_json(validation, "validation.json")
|