File size: 8,180 Bytes
81ce5d0 2476581 81ce5d0 2476581 81ce5d0 2476581 81ce5d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
""" Dataset loading script for SQuALITY, an abstractive summarization dataset that is
* long document: 3k-6k words
* question-focused: 5/doc
* multi-reference 4/question
"""
import os
import csv
import json
import datasets
_CITATION = """\
@article{wang2022squality,
title={{SQ}u{ALITY}: Building a Long-Document Summarization Dataset the Hard Way},
author={Wang, Alex and Pang, Richard Yuanzhe and Chen, Angelica and Phang, Jason and Bowman, Samuel R.},
journal={arXiv preprint 2205.11465},
year={2022}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = "ihttps://github.com/nyu-mll/SQuALITY"
_LICENSE = "CC BY"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
#_URLS = {
# "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
#}
class SQuALITYDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="squality-v1", version=datasets.Version("1.0.0"), description="SQUALITY v1.0, containing 100 stories (2000 summaries)"),
datasets.BuilderConfig(name="squality-v1.1", version=VERSION, description="SQuALITY version v1.1, expands on v1.0 by adding 27 stories (540 summaries)"),
]
DEFAULT_CONFIG_NAME = "squality-v1.1" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
#if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option1": datasets.Value("string"),
# "answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
features = datasets.Features(
{
"document": datasets.Value("string"),
"question": datasets.Value("string"),
"summary": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# If there's a common (input, target) tuple from the features,
# uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# This method is tasked with downloading/extracting the data and
# defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS),
# the configuration selected by the user is in self.config.name
if self.config.name == "squality-v1":
data_dir = "data/v1"
elif self.config.name == "squality-v1.1":
data_dir = "data/v1-1"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "test.jsonl"),
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "validation.jsonl"),
"split": "dev",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for row in enumerate(f):
# fields
# * metadata
# * document
# * questions
story = json.loads(row)
for question in story['questions']:
# fields
# * question_text
# * question_number
# * responses
key = question['gem_id']
# for the test split, yield all references at once
# to easily compute multi-reference metrics
if split == "test":
yield key, {
'document': story['document'],
'question': question['question_text'],
'summary': [r['response_text'] for r in question['responses']]
}
else:
for response in question['responses']:
# fields
# * uid
# * worker_uid
# * response_text
yield key, {
'document': story['document'],
'question': question['question_text'],
'summary': response['response_text']
}
|