Datasets:
GEM
/

Languages:
English
ArXiv:
License:
File size: 8,180 Bytes
81ce5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476581
81ce5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476581
81ce5d0
 
 
 
 
 
 
 
 
 
 
 
2476581
81ce5d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
""" Dataset loading script for SQuALITY, an abstractive summarization dataset that is
* long document: 3k-6k words
* question-focused: 5/doc
* multi-reference 4/question
 """

import os
import csv
import json

import datasets


_CITATION = """\
@article{wang2022squality,
  title={{SQ}u{ALITY}: Building a Long-Document Summarization Dataset the Hard Way},
  author={Wang, Alex and Pang, Richard Yuanzhe and Chen, Angelica and Phang, Jason and Bowman, Samuel R.},
  journal={arXiv preprint 2205.11465},
  year={2022}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

_HOMEPAGE = "ihttps://github.com/nyu-mll/SQuALITY"

_LICENSE = "CC BY"

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
#_URLS = {
#    "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
#    "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
#}


class SQuALITYDataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="squality-v1", version=datasets.Version("1.0.0"), description="SQUALITY v1.0, containing 100 stories (2000 summaries)"),
        datasets.BuilderConfig(name="squality-v1.1", version=VERSION, description="SQuALITY version v1.1, expands on v1.0 by adding 27 stories (540 summaries)"),
    ]

    DEFAULT_CONFIG_NAME = "squality-v1.1"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset

        #if self.config.name == "first_domain":  # This is the name of the configuration selected in BUILDER_CONFIGS above
        #    features = datasets.Features(
        #        {
        #            "sentence": datasets.Value("string"),
        #            "option1": datasets.Value("string"),
        #            "answer": datasets.Value("string")
        #            # These are the features of your dataset like images, labels ...
        #        }
        #    )

        features = datasets.Features(
	    {
		"document": datasets.Value("string"),
		"question": datasets.Value("string"),
		"summary": datasets.Value("string")
		# These are the features of your dataset like images, labels ...
	    }
	)

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,
            # If there's a common (input, target) tuple from the features,
            # uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # This method is tasked with downloading/extracting the data and
        # defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS),
        # the configuration selected by the user is in self.config.name

        if self.config.name == "squality-v1":
            data_dir = "data/v1"
        elif self.config.name == "squality-v1.1":
            data_dir = "data/v1-1"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "test.jsonl"),
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, "validation.jsonl"),
                    "split": "dev",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as f:
            for row in enumerate(f):
                # fields
                # * metadata
                # * document
                # * questions
                story = json.loads(row)
                for question in story['questions']:
                    # fields
                    # * question_text
                    # * question_number
                    # * responses
                    key = question['gem_id']

                    # for the test split, yield all references at once
                    # to easily compute multi-reference metrics
                    if split == "test":
                        yield key, {
                            'document': story['document'],
                            'question': question['question_text'],
                            'summary': [r['response_text'] for r in question['responses']]
                        }

                    else:
                        for response in question['responses']:
                            # fields
                            # * uid
                            # * worker_uid
                            # * response_text
                            yield key, {
                                'document': story['document'],
                                'question': question['question_text'],
                                'summary': response['response_text']
                            }