File size: 23,244 Bytes
7cd0e65
 
 
 
 
41845e8
c16d34b
41845e8
7cd0e65
 
 
 
 
 
 
 
bf0b0dc
25220fb
bf0b0dc
 
 
7cd0e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
---
annotations_creators:
- expert-created
language_creators:
- unknown
language:
- fi
license:
- cc-by-nc-sa-4.0
multilinguality:
- unknown
size_categories:
- unknown
source_datasets:
- original
task_categories:
- table-to-text
task_ids: []
pretty_name: turku_hockey_data2text
tags:
- data-to-text
---

# Dataset Card for GEM/turku_hockey_data2text

## Dataset Description

- **Homepage:** https://turkunlp.org/hockey_data2text.html
- **Repository:** https://github.com/TurkuNLP/Turku-hockey-data2text
- **Paper:** https://aclanthology.org/W19-6125/
- **Leaderboard:** N/A
- **Point of Contact:** Jenna Kanerva, Filip Ginter

### Link to Main Data Card

You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/turku_hockey_data2text).

### Dataset Summary 

This is a Finnish data-to-text dataset in which the input is structured information about a hockey game and the output a description of the game.

You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/turku_hockey_data2text')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/turku_hockey_data2text).

#### website
[Website](https://turkunlp.org/hockey_data2text.html)

#### paper
[ACL anthology](https://aclanthology.org/W19-6125/)

#### authors
Jenna Kanerva, Samuel Rönnqvist, Riina Kekki, Tapio Salakoski, Filip Ginter (TurkuNLP / University of Turku)

## Dataset Overview

### Where to find the Data and its Documentation

#### Webpage

<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Website](https://turkunlp.org/hockey_data2text.html)

#### Download

<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[Github](https://github.com/TurkuNLP/Turku-hockey-data2text)

#### Paper

<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[ACL anthology](https://aclanthology.org/W19-6125/)

#### BibTex

<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{kanerva2019newsgen,
  Title = {Template-free Data-to-Text Generation of Finnish Sports News},
  Author = {Jenna Kanerva and Samuel R{\"o}nnqvist and Riina Kekki and Tapio Salakoski and Filip Ginter},
  booktitle = {Proceedings of the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa’19)},
  year={2019}
  }
```

#### Contact Name

<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Jenna Kanerva, Filip Ginter

#### Contact Email

<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected], [email protected]

#### Has a Leaderboard?

<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no


### Languages and Intended Use

#### Multilingual?

<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no

#### Covered Dialects

<!-- info: What dialects are covered? Are there multiple dialects per language? -->
<!-- scope: periscope -->
written standard language

#### Covered Languages

<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`Finnish`

#### Whose Language?

<!-- info: Whose language is in the dataset? -->
<!-- scope: periscope -->
The original news articles are written by professional journalists. The text passages extracted in the annotation may be slightly edited compared to the original language during the corpus annotation.

#### License

<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
cc-by-nc-sa-4.0: Creative Commons Attribution Non Commercial Share Alike 4.0 International

#### Intended Use

<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
This dataset was developed as a benchmark for evaluating template-free, machine learning methods on Finnish news generation in the area of ice hockey reporting.

#### Primary Task

<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Data-to-Text

#### Communicative Goal

<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
Describe an event from an ice hockey game based on the given structural data.


### Credit

#### Curation Organization Type(s)

<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`academic`

#### Curation Organization(s)

<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
University of Turku

#### Dataset Creators

<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Jenna Kanerva, Samuel Rönnqvist, Riina Kekki, Tapio Salakoski, Filip Ginter (TurkuNLP / University of Turku)

#### Funding

<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
The project was supported by the Google Digital News Innovation Fund.

#### Who added the Dataset to GEM?

<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Jenna Kanerva, Filip Ginter (TurkuNLP / University of Turku)


### Dataset Structure

#### Data Fields

<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
The dataset is constructed of games, where each game is a list of events. If the event was annotated (corresponding sentence was found from the news article), it includes `text` field with value other than empty string ("").

For each game (dict), there are keys `gem_id` (string), `id` (string), `news_article` (string), and `events` (list).

For each event (dict), there are different, relevant keys available with non empty values depending on the event type (e.g. goal or penalty). The mandatory keys for each event are `event_id` (string), `event_type` (string), `text` (string, empty string if not annotated), and `multi_reference` (bool). The keys not relevant for the specific event type are left empty.

The relevant keys in the event dictionary are:

For each event type, the following keys are relevant:
  `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string)
  `event_type`: Type of the event, possible values are `game result`, `goal`, `penalty`, or `saves` (string)
  `text`: Natural language description of the event, or empty string if not available (string)
  `multi_reference`: Does this event refer to a text passage describing multiple events? (bool)


The rest of the fields are specific to the event type. The relevant fields for each event type are:

game result:
  `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string)
  `event_type`: Type of the event (string)
  `home_team`: Name of the home team (string)
  `guest_team`: Name of the guest team (string)
  `score`: Final score of the game, in the form of home–guest (string)
  `periods`: Scores for individual periods, each in the form of home–guest score in that period (list of strings)
  `features`: Additional features, such as overtime win or shoot out (list of strings)
  `text`: Natural language description of the event, or empty string if not available (string)
  `multi_reference`: Does this event refer to a text passage describing multiple events? (bool)

goal:
  `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string)
  `event_type`: Type of the event (string)
  `player`: Name of the player scoring (string)
  `assist`: Names of the players assisting, at most two players (list of strings)
  `team`: Team scoring with possible values of `home` or `guest` (string)
  `team_name`: Name of the team scoring (string)
  `score`: Score after the goal, in the form of home–guest (string)
  `time`: Time of the goal, minutes and seconds from the beginning (string)
  `features`: Additional features, such as power play or short-handed goal (list of strings)
  `text`: Natural language description of the event, or empty string if not available (string)
  `multi_reference`: Does this event refer to a text passage describing multiple events? (bool)

penalty:
  `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string)
  `event_type`: Type of the event (string)
  `player`: Name of the player getting the penalty (string)
  `team`: Team getting the penalty with possible values of `home` or `guest` (string)
  `team_name`: Name of the team getting the penalty (string)
  `penalty_minutes`: Penalty minutes (string)
  `time`: Time of the penalty, minutes and seconds from the beginning (string)
  `text`: Natural language description of the event, or empty string if not available (string)
  `multi_reference`: Does this event refer to a text passage describing multiple events? (bool)

saves:
 `event_id`: Identifier of the event, unique to the game but not globally, in chronological order (string)
  `event_type`: Type of the event (string)
  `player`: Name of the goalkeeper (string)
  `team`: Team of the goalkeeper with possible values of `home` or `guest` (string)
  `team_name`: Name of the team (string)
  `saves`: Number of saves in the game (string)
  `text`: Natural language description of the event, or empty string if not available (string)
  `multi_reference`: Does this event refer to a text passage describing multiple events? (bool)


Text passages describing multiple events (multi_reference):

Some text passages refer to multiple events in such way that separating them to individual statements is not adequate (e.g. "The home team received two penalties towards the end of the first period."). In these cases, multiple events are aligned to the same text passage so that the first event (in chronological order) include the annotated text passage, while the rest of the events referring to the same text passage include the identifier of the first event in the annotated text field (e.g. `text`: "E4").

#### Example Instance

<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
```
{
  'gem_id': 'gem-turku_hockey_data2text-train-0',
  'id': '20061031-TPS-HPK',
  'news_article': 'HPK:n hyvä syysvire jatkuu jääkiekon SM-liigassa. Tiistaina HPK kukisti mainiolla liikkeellä ja tehokkaalla ylivoimapelillä TPS:n vieraissa 1–0 (1–0, 0–0, 0–0).\nHPK hyödynsi ylivoimaa mennen jo ensimmäisessä erässä Mikko Mäenpään maalilla 1–0 -johtoon.\nToisessa ja kolmannessa erässä HPK tarjosi edelleen TPS:lle runsaasti tilanteita, mutta maalia eivät turkulaiset millään ilveellä saaneet. Pahin este oli loistavan pelin Hämeenlinnan maalilla pelannut Mika Oksa.\nTPS:n maalissa Jani Hurme ei osumille mitään mahtanut. Joukkueen suuri yksinäinen kenttäpelaaja oli Kai Nurminen, mutta hänelläkään ei ollut onnea maalitilanteissa.',
  'events':
    {
      'event_id': ['E1', 'E2', 'E3'],
      'event_type': ['game result', 'penalty', 'goal'],
      'text': ['HPK kukisti TPS:n vieraissa 1–0 (1–0, 0–0, 0–0).', '', 'HPK hyödynsi ylivoimaa mennen jo ensimmäisessä erässä Mikko Mäenpään maalilla 1–0 -johtoon.'],
      'home_team': ['TPS', '', ''],
      'guest_team': ['HPK', '', ''],
      'score': ['0–1', '', '0–1'],
      'periods': [['0–1', '0–0', '0–0'], [], []],
      'features': [[], [], ['power play']],
      'player': ['', 'Fredrik Svensson', 'Mikko Mäenpää'],
      'assist': [[], [], ['Jani Keinänen', 'Toni Mäkiaho']],
      'team': ['', 'guest', 'guest'],
      'team_name': ['', 'HPK', 'HPK'],
      'time': ['', '9.28', '14.57'],
      'penalty_minutes': ['', '2', ''],
      'saves': ['', '', ''],
      'multi_reference': [false, false, false]
    }
}
```

#### Data Splits

<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
The corpus include 3 splits: train, validation, and test.



## Dataset in GEM

### Rationale for Inclusion in GEM

#### Why is the Dataset in GEM?

<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
The dataset was created to develop machine learned text generation models for Finnish ice hockey news, where the generation would reflect the natural language variation found from the game reports written by professional journalists. While the original game reports often include additional information not derivable from the game statistics, the corpus was fully manually curated to remove all such  information from the natural language descriptions. The rationale of such curation was to prevent model 'hallucinating' additional facts.

#### Similar Datasets

<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
yes

#### Unique Language Coverage

<!-- info: Does this dataset cover other languages than other datasets for the same task? -->
<!-- scope: periscope -->
yes

#### Difference from other GEM datasets

<!-- info: What else sets this dataset apart from other similar datasets in GEM? -->
<!-- scope: microscope -->
This is the only data2text corpus for Finnish in GEM.

#### Ability that the Dataset measures

<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
morphological inflection, language variation


### GEM-Specific Curation

#### Modificatied for GEM?

<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
yes

#### GEM Modifications

<!-- info: What changes have been made to he original dataset? -->
<!-- scope: periscope -->
`data points modified`

#### Modification Details

<!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification -->
<!-- scope: microscope -->
Structural data was translated into English.

#### Additional Splits?

<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no


### Getting Started with the Task




## Previous Results

### Previous Results

#### Metrics

<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`BLEU`, `METEOR`, `ROUGE`, `WER`

#### Proposed Evaluation

<!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
<!-- scope: microscope -->
Automatic evaluation: BLEU, NIST, METEOR, ROUGE-L, CIDEr
Manual evaluation: factual mistakes, grammatical errors, minimum edit distance to an acceptable game report (using WER)

#### Previous results available?

<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes



## Dataset Curation

### Original Curation

#### Original Curation Rationale

<!-- info: Original curation rationale -->
<!-- scope: telescope -->
The dataset is designed for text generation (data2text), where the original source of natural language descriptions is news articles written by journalists. While the link between structural data (ice hockey game statistics) and the news articles describing the game  was quite weak (news articles including a lot of information not derivable from the statistics, while leaving many events unmentioned), the corpus includes full manual annotation aligning the events extracted from game statistics and the corresponding natural language passages extracted from the news articles.

Each event is manually aligned into a sentence-like passage, and in case a suitable passage was not found, the annotation is left empty (with value `None`). The extracted passages were manually modified not to include additional information not derivable from the game statistics, or not considered as world knowledge. The manual curation of passages is designed to prevent model hallucination, i.e. model learning to generate facts not derivable from the input data.

#### Communicative Goal

<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
Describing the given events (structural data) in natural language, and therefore generating ice hockey game reports.

#### Sourced from Different Sources

<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
no


### Language Data

#### How was Language Data Obtained?

<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Other`

#### Language Producers

<!-- info: What further information do we have on the language producers? -->
<!-- scope: microscope -->
The initial data, both game statistics and news articles, were obtained from the Finnish News Agency STT news archives released for academic use (http://urn.fi/urn:nbn:fi:lb-2019041501). The original news articles are written by professional journalists.

We (TurkuNLP) gratefully acknowledge the collaboration of Maija Paikkala, Salla Salmela and Pihla Lehmusjoki from the Finnish News Agency STT while creating the corpus.

#### Topics Covered

<!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
<!-- scope: periscope -->
Ice hockey, news

#### Data Validation

<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
not validated

#### Was Data Filtered?

<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
algorithmically

#### Filter Criteria

<!-- info: What were the selection criteria? -->
<!-- scope: microscope -->
Include only games, where both game statistics and a news article describing the game were available (based on timestamps and team names).


### Structured Annotations

#### Additional Annotations?

<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
expert created

#### Number of Raters

<!-- info: What is the number of raters -->
<!-- scope: telescope -->
1

#### Rater Qualifications

<!-- info: Describe the qualifications required of an annotator. -->
<!-- scope: periscope -->
Members of the TurkuNLP research group, native speakers of Finnish.

#### Raters per Training Example

<!-- info: How many annotators saw each training example? -->
<!-- scope: periscope -->
1

#### Raters per Test Example

<!-- info: How many annotators saw each test example? -->
<!-- scope: periscope -->
1

#### Annotation Service?

<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no

#### Annotation Values

<!-- info: Purpose and values for each annotation -->
<!-- scope: microscope -->
Manual alignment of events and their natural language descriptions. Removing information not derivable from the input data or world knowledge in order to prevent the model 'hallucination'.

#### Any Quality Control?

<!-- info: Quality control measures? -->
<!-- scope: telescope -->
validated by data curators

#### Quality Control Details

<!-- info: Describe the quality control measures that were taken. -->
<!-- scope: microscope -->
Manual inspection of examples during the initial annotation training phrase.


### Consent

#### Any Consent Policy?

<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
yes

#### Consent Policy Details

<!-- info: What was the consent policy? -->
<!-- scope: microscope -->
The corpus license was agreed with the providers of the source material.


### Private Identifying Information (PII)

#### Contains PII?

<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
yes/very likely

#### Categories of PII

<!-- info: What categories of PII are present or suspected in the data? -->
<!-- scope: periscope -->
`generic PII`

#### Any PII Identification?

<!-- info: Did the curators use any automatic/manual method to identify PII in the dataset? -->
<!-- scope: periscope -->
no identification


### Maintenance

#### Any Maintenance Plan?

<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no



## Broader Social Context

### Previous Work on the Social Impact of the Dataset

#### Usage of Models based on the Data

<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no


### Impact on Under-Served Communities

#### Addresses needs of underserved Communities?

<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no


### Discussion of Biases

#### Any Documented Social Biases?

<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
no

#### Are the Language Producers Representative of the Language?

<!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
<!-- scope: periscope -->
The dataset represents only written standard language. 



## Considerations for Using the Data

### PII Risks and Liability

#### Potential PII Risk

<!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
<!-- scope: microscope -->
None


### Licenses

#### Copyright Restrictions on the Dataset

<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`non-commercial use only`

#### Copyright Restrictions on the Language Data

<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`non-commercial use only`


### Known Technical Limitations