File size: 9,197 Bytes
b864b63 b1a8573 b864b63 9a93935 b1a8573 b864b63 b1a8573 b864b63 b1a8573 9a93935 b1a8573 b864b63 b1a8573 6ea2f3f b864b63 b1a8573 b864b63 b1a8573 b864b63 b1a8573 b864b63 b1a8573 b864b63 b1a8573 b864b63 b1a8573 b864b63 b1a8573 b864b63 550c363 b864b63 b1a8573 b864b63 550c363 b1a8573 35a742a b864b63 b1a8573 550c363 b1a8573 550c363 b1a8573 550c363 b1a8573 550c363 b864b63 550c363 b1a8573 b864b63 b1a8573 550c363 b1a8573 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WikiLingua: A benchmark dataset for multilingual abstractive summarization."""
import os
import glob
import pickle
import datasets
_CITATION = """\
@article{ladhak-wiki-2020,
title = {WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization},
authors = {Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
journal = {arXiv preprint arXiv:2010.03093},
year = {2020},
url = {https://arxiv.org/abs/2010.03093}
}
"""
_DESCRIPTION = """\
WikiLingua is a large-scale multilingual dataset for the evaluation of
crosslingual abstractive summarization systems. The dataset includes ~770k
article and summary pairs in 18 languages from WikiHow. The gold-standard
article-summary alignments across languages was done by aligning the images
that are used to describe each how-to step in an article.
"""
_HOMEPAGE = "https://github.com/esdurmus/Wikilingua"
_LICENSE = "CC BY-NC-SA 3.0"
_URL = "wikilingua_cleaned.tar.gz"
VERSION = datasets.Version("2.0.0")
valid_language_codes = {
"ar",
"cs",
"de",
"en",
"es",
"fr",
"hi",
"id",
"it",
"ja",
"ko",
"nl",
"pt",
"ru",
"th",
"tr",
"vi",
"zh",
}
valid_config_names = (
# multilingual
list(valid_language_codes)
+ [
# crosslingual / bridge
f"{src}_{tgt}"
for src in valid_language_codes
for tgt in valid_language_codes
if src != tgt
]
# load all multilingual / all crosslingual
+ ["multilingual", "crosslingual"]
)
class WikilinguaModes:
MULTILINGUAL = "multilingual" # L -> L
CROSSLINGUAL = "crosslingual" # L1 -> L1, L2 -> L2, L1 -> L2, L2 -> L1
BRIDGE = "bridge" # L -> en, en -> L, L -> L
class WikilinguaConfig(datasets.BuilderConfig):
"""BuilderConfig for WikiLingua."""
def __init__(self, name, **kwargs):
"""
Args:
name (string): configuration name that indicates task setup and languages.
1. multilingual - <lang>
2. crosslingual - <lang1>_<lang2>
3. english as bridge - en_<lang>
4. load all multilingual - multilingual
5. load all crosslingual - crosslingual
lang refers to the respective two-letter language code.
note that the order of lang1/lang2 does not matter;
for language pair (L1, L2), we load L1 <-> L2 and L1 -> L1, L2 -> L2.
"""
if name not in valid_config_names:
raise ValueError(
f"Expected config name to be one of: {', '.join(valid_config_names)}"
)
eles = name.split("_")
if name in (WikilinguaModes.MULTILINGUAL, WikilinguaModes.CROSSLINGUAL):
self.mode = name
self.source_lang = None
self.target_lang = None
description = f"Wikilingua summarization data ({self.mode}; all instances)"
else:
if len(eles) == 1:
mode = WikilinguaModes.MULTILINGUAL
source_lang, target_lang = name, name
elif len(eles) == 2:
source_lang, target_lang = eles
if source_lang == "en" or target_lang == "en":
mode = WikilinguaModes.BRIDGE
else:
mode = WikilinguaModes.CROSSLINGUAL
self.source_lang = source_lang
self.target_lang = target_lang
self.mode = mode
description = (
f"Wikilingua summarisation data ({mode}; {source_lang}, {target_lang})"
)
self.languages = set([self.source_lang, self.target_lang])
super().__init__(
name=name,
description=description,
**kwargs,
)
class WikiLingua(datasets.GeneratorBasedBuilder):
"""WikiLingua: A benchmark dataset for multilingual abstractive summarization."""
BUILDER_CONFIG_CLASS = WikilinguaConfig
BUILDER_CONFIGS = [
WikilinguaConfig(
name=config_name,
version=VERSION,
)
for config_name in valid_config_names
]
DEFAULT_CONFIG_NAME = "en"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"gem_id": datasets.Value("string"),
"gem_parent_id": datasets.Value("string"),
"source_language": datasets.Value("string"),
"target_language": datasets.Value("string"),
"source": datasets.Value("string"),
"target": datasets.Value("string"),
"references": [datasets.Value("string")],
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "cleaned")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": glob.glob(
os.path.join(data_dir, f"wikilingua_*.train.pk")
)
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": glob.glob(
os.path.join(data_dir, f"wikilingua_*lingual.val.pk")
)
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": glob.glob(
os.path.join(data_dir, f"wikilingua_*lingual.test.pk")
)
},
),
datasets.SplitGenerator(
name=f"sampled_{datasets.Split.VALIDATION}",
gen_kwargs={
"filepaths": glob.glob(
os.path.join(data_dir, f"wikilingua_*_sampled.val.pk")
)
},
),
datasets.SplitGenerator(
name=f"sampled_{datasets.Split.TEST}",
gen_kwargs={
"filepaths": glob.glob(
os.path.join(data_dir, f"wikilingua_*_sampled.test.pk")
)
},
),
]
def _generate_examples(self, filepaths):
"""Yields examples."""
for filepath in filepaths:
if (
self.config.name == WikilinguaModes.MULTILINGUAL
and WikilinguaModes.CROSSLINGUAL in filepath
) or (
self.config.name == WikilinguaModes.CROSSLINGUAL
and WikilinguaModes.MULTILINGUAL in filepath
):
yield from []
else:
with open(filepath, "rb") as f:
data = pickle.load(f)
for d in data:
idx = d["id"].replace(".", "-")
src = d["document"].strip()
tgt = d["summary"].strip()
src_lang = d["source"]
tgt_lang = d["target"]
# if loading specific language pair, filter for those
if any(self.config.languages):
if not (
src_lang in self.config.languages
and tgt_lang in self.config.languages
):
continue
# in bridge, we are inerested in L <-> en and L -> L, but not en -> en
if self.config.mode == WikilinguaModes.BRIDGE:
if src_lang == "en" and tgt_lang == "en":
continue
yield idx, {
"gem_id": idx,
"gem_parent_id": idx,
"source_language": src_lang,
"target_language": tgt_lang,
"source": src,
"target": tgt,
"references": [tgt],
}
|