Datasets:
GEM
/

License:
File size: 9,197 Bytes
b864b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1a8573
 
b864b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a93935
b1a8573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864b63
 
b1a8573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864b63
 
 
 
 
 
b1a8573
 
 
 
9a93935
b1a8573
 
 
 
 
 
 
 
 
 
 
 
 
b864b63
 
b1a8573
 
 
 
 
6ea2f3f
b864b63
b1a8573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864b63
 
 
b1a8573
b864b63
 
 
 
 
 
 
 
 
 
 
b1a8573
b864b63
 
b1a8573
b864b63
 
b1a8573
b864b63
 
b1a8573
 
 
b864b63
 
 
b1a8573
 
b864b63
 
550c363
b864b63
b1a8573
b864b63
 
 
 
 
 
 
 
550c363
b1a8573
35a742a
b864b63
b1a8573
 
 
550c363
 
 
 
 
b1a8573
 
 
550c363
 
 
 
 
b1a8573
 
550c363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1a8573
 
550c363
b864b63
550c363
 
 
 
 
 
 
 
 
b1a8573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b864b63
b1a8573
 
 
 
 
 
 
 
 
 
 
 
 
 
550c363
b1a8573
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WikiLingua: A benchmark dataset for multilingual abstractive summarization."""

import os
import glob
import pickle
import datasets


_CITATION = """\
@article{ladhak-wiki-2020,
  title   = {WikiLingua: A New Benchmark Dataset for Multilingual Abstractive Summarization},
  authors = {Faisal Ladhak, Esin Durmus, Claire Cardie and Kathleen McKeown},
  journal = {arXiv preprint arXiv:2010.03093},
  year    = {2020},
  url     = {https://arxiv.org/abs/2010.03093}
}
"""

_DESCRIPTION = """\
WikiLingua is a large-scale multilingual dataset for the evaluation of
crosslingual abstractive summarization systems. The dataset includes ~770k
article and summary pairs in 18 languages from WikiHow. The gold-standard
article-summary alignments across languages was done by aligning the images
that are used to describe each how-to step in an article.
"""

_HOMEPAGE = "https://github.com/esdurmus/Wikilingua"

_LICENSE = "CC BY-NC-SA 3.0"

_URL = "wikilingua_cleaned.tar.gz"

VERSION = datasets.Version("2.0.0")

valid_language_codes = {
    "ar",
    "cs",
    "de",
    "en",
    "es",
    "fr",
    "hi",
    "id",
    "it",
    "ja",
    "ko",
    "nl",
    "pt",
    "ru",
    "th",
    "tr",
    "vi",
    "zh",
}

valid_config_names = (
    # multilingual
    list(valid_language_codes)
    + [
        # crosslingual / bridge
        f"{src}_{tgt}"
        for src in valid_language_codes
        for tgt in valid_language_codes
        if src != tgt
    ]
    # load all multilingual / all crosslingual
    + ["multilingual", "crosslingual"]
)


class WikilinguaModes:
    MULTILINGUAL = "multilingual"  # L -> L
    CROSSLINGUAL = "crosslingual"  # L1 -> L1, L2 -> L2, L1 -> L2, L2 -> L1
    BRIDGE = "bridge"  # L -> en, en -> L, L -> L


class WikilinguaConfig(datasets.BuilderConfig):
    """BuilderConfig for WikiLingua."""

    def __init__(self, name, **kwargs):
        """
        Args:
            name (string): configuration name that indicates task setup and languages.

                1. multilingual - <lang>
                2. crosslingual - <lang1>_<lang2>
                3. english as bridge - en_<lang>
                4. load all multilingual - multilingual
                5. load all crosslingual - crosslingual

                lang refers to the respective two-letter language code.
                note that the order of lang1/lang2 does not matter;
                for language pair (L1, L2), we load L1 <-> L2 and L1 -> L1, L2 -> L2.
        """
        if name not in valid_config_names:
            raise ValueError(
                f"Expected config name to be one of: {', '.join(valid_config_names)}"
            )

        eles = name.split("_")

        if name in (WikilinguaModes.MULTILINGUAL, WikilinguaModes.CROSSLINGUAL):
            self.mode = name
            self.source_lang = None
            self.target_lang = None
            description = f"Wikilingua summarization data ({self.mode};  all instances)"
        else:
            if len(eles) == 1:
                mode = WikilinguaModes.MULTILINGUAL
                source_lang, target_lang = name, name
            elif len(eles) == 2:
                source_lang, target_lang = eles
                if source_lang == "en" or target_lang == "en":
                    mode = WikilinguaModes.BRIDGE
                else:
                    mode = WikilinguaModes.CROSSLINGUAL
            self.source_lang = source_lang
            self.target_lang = target_lang
            self.mode = mode
            description = (
                f"Wikilingua summarisation data ({mode}; {source_lang}, {target_lang})"
            )
        self.languages = set([self.source_lang, self.target_lang])

        super().__init__(
            name=name,
            description=description,
            **kwargs,
        )


class WikiLingua(datasets.GeneratorBasedBuilder):
    """WikiLingua: A benchmark dataset for multilingual abstractive summarization."""

    BUILDER_CONFIG_CLASS = WikilinguaConfig

    BUILDER_CONFIGS = [
        WikilinguaConfig(
            name=config_name,
            version=VERSION,
        )
        for config_name in valid_config_names
    ]

    DEFAULT_CONFIG_NAME = "en"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "gem_id": datasets.Value("string"),
                    "gem_parent_id": datasets.Value("string"),
                    "source_language": datasets.Value("string"),
                    "target_language": datasets.Value("string"),
                    "source": datasets.Value("string"),
                    "target": datasets.Value("string"),
                    "references": [datasets.Value("string")],
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        dl_dir = dl_manager.download_and_extract(_URL)
        data_dir = os.path.join(dl_dir, "cleaned")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": glob.glob(
                        os.path.join(data_dir, f"wikilingua_*.train.pk")
                    )
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepaths": glob.glob(
                        os.path.join(data_dir, f"wikilingua_*lingual.val.pk")
                    )
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepaths": glob.glob(
                        os.path.join(data_dir, f"wikilingua_*lingual.test.pk")
                    )
                },
            ),
            datasets.SplitGenerator(
                name=f"sampled_{datasets.Split.VALIDATION}",
                gen_kwargs={
                    "filepaths": glob.glob(
                        os.path.join(data_dir, f"wikilingua_*_sampled.val.pk")
                    )
                },
            ),
            datasets.SplitGenerator(
                name=f"sampled_{datasets.Split.TEST}",
                gen_kwargs={
                    "filepaths": glob.glob(
                        os.path.join(data_dir, f"wikilingua_*_sampled.test.pk")
                    )
                },
            ),
        ]

    def _generate_examples(self, filepaths):
        """Yields examples."""
        for filepath in filepaths:
            if (
                self.config.name == WikilinguaModes.MULTILINGUAL
                and WikilinguaModes.CROSSLINGUAL in filepath
            ) or (
                self.config.name == WikilinguaModes.CROSSLINGUAL
                and WikilinguaModes.MULTILINGUAL in filepath
            ):
                yield from []
            else:

                with open(filepath, "rb") as f:
                    data = pickle.load(f)

                    for d in data:
                        idx = d["id"].replace(".", "-")
                        src = d["document"].strip()
                        tgt = d["summary"].strip()
                        src_lang = d["source"]
                        tgt_lang = d["target"]

                        # if loading specific language pair, filter for those
                        if any(self.config.languages):
                            if not (
                                src_lang in self.config.languages
                                and tgt_lang in self.config.languages
                            ):
                                continue

                        # in bridge, we are inerested in L <-> en and L -> L, but not en -> en
                        if self.config.mode == WikilinguaModes.BRIDGE:
                            if src_lang == "en" and tgt_lang == "en":
                                continue

                        yield idx, {
                            "gem_id": idx,
                            "gem_parent_id": idx,
                            "source_language": src_lang,
                            "target_language": tgt_lang,
                            "source": src,
                            "target": tgt,
                            "references": [tgt],
                        }