File size: 9,953 Bytes
580ac3c 425dd66 177d6f7 425dd66 580ac3c d453029 580ac3c d453029 580ac3c d453029 580ac3c d453029 580ac3c d453029 580ac3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
---
annotations_creators:
- found
language_creators:
- unknown
language:
- de
- en
- fr
- cs
license:
- cc-by-sa-4.0
multilinguality:
- unknown
pretty_name: xwikis
size_categories:
- unknown
source_datasets:
- original
task_categories:
- summarization
task_ids:
- unknown
---
# Dataset Card for GEM/xwikis
## Dataset Description
- **Homepage:** https://github.com/lauhaide/clads
- **Repository:** [Needs More Information]
- **Paper:** https://arxiv.org/abs/2202.09583
- **Leaderboard:** N/A
- **Point of Contact:** Laura Perez-Beltrachini
### Link to Main Data Card
You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/xwikis).
### Dataset Summary
The XWikis Corpus provides datasets with different language pairs and directions for cross-lingual and multi-lingual abstractive document summarisation.
You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/xwikis')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/xwikis).
#### website
[Github](https://github.com/lauhaide/clads)
#### paper
https://arxiv.org/abs/2202.09583
#### authors
Laura Perez-Beltrachini (University of Edinburgh)
## Dataset Overview
### Where to find the Data and its Documentation
#### Webpage
<!-- info: What is the webpage for the dataset (if it exists)? -->
<!-- scope: telescope -->
[Github](https://github.com/lauhaide/clads)
#### Paper
<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
https://arxiv.org/abs/2202.09583
#### BibTex
<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@InProceedings{clads-emnlp,
author = "Laura Perez-Beltrachini and Mirella Lapata",
title = "Models and Datasets for Cross-Lingual Summarisation",
booktitle = "Proceedings of The 2021 Conference on Empirical Methods in Natural Language Processing ",
year = "2021",
address = "Punta Cana, Dominican Republic",
}
```
#### Contact Name
<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Laura Perez-Beltrachini
#### Contact Email
<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]
#### Has a Leaderboard?
<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
no
### Languages and Intended Use
#### Multilingual?
<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
yes
#### Covered Languages
<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`German`, `English`, `French`, `Czech`
#### License
<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
cc-by-sa-4.0: Creative Commons Attribution Share Alike 4.0 International
#### Intended Use
<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
Cross-lingual and Multi-lingual single long input document abstractive summarisation.
#### Primary Task
<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Summarization
#### Communicative Goal
<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
Entity descriptive summarisation, that is, generate a summary that conveys the most salient facts of a document related to a given entity.
### Credit
#### Curation Organization Type(s)
<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`academic`
#### Dataset Creators
<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Laura Perez-Beltrachini (University of Edinburgh)
#### Who added the Dataset to GEM?
<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Laura Perez-Beltrachini (University of Edinburgh) and Ronald Cardenas (University of Edinburgh)
### Dataset Structure
#### Data Splits
<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
For each language pair and direction there exists a train/valid/test split.
The test split is a sample of size 7k from the intersection of titles existing in the four languages (cs,fr,en,de).
Train/valid are randomly split.
## Dataset in GEM
### Rationale for Inclusion in GEM
#### Similar Datasets
<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
no
### GEM-Specific Curation
#### Modificatied for GEM?
<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
no
#### Additional Splits?
<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
no
### Getting Started with the Task
## Previous Results
### Previous Results
#### Measured Model Abilities
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
- identification of entity salient information
- translation
- multi-linguality
- cross-lingual transfer, zero-shot, few-shot
#### Metrics
<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`ROUGE`
#### Previous results available?
<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes
#### Other Evaluation Approaches
<!-- info: What evaluation approaches have others used? -->
<!-- scope: periscope -->
ROUGE-1/2/L
## Dataset Curation
### Original Curation
#### Sourced from Different Sources
<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
no
### Language Data
#### How was Language Data Obtained?
<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Found`
#### Where was it found?
<!-- info: If found, where from? -->
<!-- scope: telescope -->
`Single website`
#### Data Validation
<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
other
#### Was Data Filtered?
<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
not filtered
### Structured Annotations
#### Additional Annotations?
<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
found
#### Annotation Service?
<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no
#### Annotation Values
<!-- info: Purpose and values for each annotation -->
<!-- scope: microscope -->
The input documents have section structure information.
#### Any Quality Control?
<!-- info: Quality control measures? -->
<!-- scope: telescope -->
validated by another rater
#### Quality Control Details
<!-- info: Describe the quality control measures that were taken. -->
<!-- scope: microscope -->
Bilingual annotators assessed the content overlap of source document and target summaries.
### Consent
#### Any Consent Policy?
<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
no
### Private Identifying Information (PII)
#### Contains PII?
<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
no PII
### Maintenance
#### Any Maintenance Plan?
<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
no
## Broader Social Context
### Previous Work on the Social Impact of the Dataset
#### Usage of Models based on the Data
<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no
### Impact on Under-Served Communities
#### Addresses needs of underserved Communities?
<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no
### Discussion of Biases
#### Any Documented Social Biases?
<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
no
## Considerations for Using the Data
### PII Risks and Liability
### Licenses
#### Copyright Restrictions on the Dataset
<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`public domain`
#### Copyright Restrictions on the Language Data
<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`public domain`
### Known Technical Limitations
|