Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
German
Size:
100K<n<1M
License:
File size: 8,947 Bytes
a4b90e0 8a79cf1 a4b90e0 fba7825 a4b90e0 8a79cf1 a4b90e0 fba7825 a4b90e0 fba7825 a4b90e0 fba7825 a4b90e0 fba7825 a4b90e0 fba7825 a4b90e0 fba7825 a4b90e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The GermEval 2014 NER Shared Task dataset."""
import csv
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{benikova-etal-2014-nosta,
title = {NoSta-D Named Entity Annotation for German: Guidelines and Dataset},
author = {Benikova, Darina and
Biemann, Chris and
Reznicek, Marc},
booktitle = {Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)},
month = {may},
year = {2014},
address = {Reykjavik, Iceland},
publisher = {European Language Resources Association (ELRA)},
url = {http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf},
pages = {2524--2531},
}
"""
_DESCRIPTION = """\
The GermEval 2014 NER Shared Task builds on a new dataset with German Named Entity annotation with the following properties:\
- The data was sampled from German Wikipedia and News Corpora as a collection of citations.\
- The dataset covers over 31,000 sentences corresponding to over 590,000 tokens.\
- The NER annotation uses the NoSta-D guidelines, which extend the Tübingen Treebank guidelines,\
using four main NER categories with sub-structure, and annotating embeddings among NEs\
such as [ORG FC Kickers [LOC Darmstadt]].
"""
_URLS = {
"train": "https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P",
"dev": "https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm",
"test": "https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH",
}
class GermEval14Config(datasets.BuilderConfig):
"""BuilderConfig for GermEval 2014."""
def __init__(self, **kwargs):
"""BuilderConfig for GermEval 2014.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(GermEval14Config, self).__init__(**kwargs)
class GermEval14(datasets.GeneratorBasedBuilder):
"""GermEval 2014 NER Shared Task dataset."""
BUILDER_CONFIGS = [
GermEval14Config(
name="germeval_14", version=datasets.Version("2.0.0"), description="GermEval 2014 NER Shared Task dataset"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"source": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-LOC",
"I-LOC",
"B-LOCderiv",
"I-LOCderiv",
"B-LOCpart",
"I-LOCpart",
"B-ORG",
"I-ORG",
"B-ORGderiv",
"I-ORGderiv",
"B-ORGpart",
"I-ORGpart",
"B-OTH",
"I-OTH",
"B-OTHderiv",
"I-OTHderiv",
"B-OTHpart",
"I-OTHpart",
"B-PER",
"I-PER",
"B-PERderiv",
"I-PERderiv",
"B-PERpart",
"I-PERpart",
]
)
),
"nested_ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-LOC",
"I-LOC",
"B-LOCderiv",
"I-LOCderiv",
"B-LOCpart",
"I-LOCpart",
"B-ORG",
"I-ORG",
"B-ORGderiv",
"I-ORGderiv",
"B-ORGpart",
"I-ORGpart",
"B-OTH",
"I-OTH",
"B-OTHderiv",
"I-OTHderiv",
"B-OTHpart",
"I-OTHpart",
"B-PER",
"I-PER",
"B-PERderiv",
"I-PERderiv",
"B-PERpart",
"I-PERpart",
]
)
),
}
),
supervised_keys=None,
homepage="https://sites.google.com/site/germeval2014ner/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
current_source = ""
current_tokens = []
current_ner_tags = []
current_nested_ner_tags = []
sentence_counter = 0
for row in data:
if row:
if row[0] == "#":
current_source = " ".join(row[1:])
continue
id_, token, label, nested_label = row[:4]
current_tokens.append(token)
current_ner_tags.append(label)
current_nested_ner_tags.append(nested_label)
else:
# New sentence
if not current_tokens:
# Consecutive empty lines will cause empty sentences
continue
assert len(current_tokens) == len(current_ner_tags), "💔 between len of tokens & labels"
assert len(current_ner_tags) == len(
current_nested_ner_tags
), "💔 between len of labels & nested labels"
assert current_source, "💥 Source for new sentence was not set"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_ner_tags,
"nested_ner_tags": current_nested_ner_tags,
"source": current_source,
},
)
sentence_counter += 1
current_tokens = []
current_ner_tags = []
current_nested_ner_tags = []
current_source = ""
yield sentence
# Don't forget last sentence in dataset 🧐
yield sentence_counter, {
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_ner_tags,
"nested_ner_tags": current_nested_ner_tags,
"source": current_source,
}
|