Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
German
Size:
100K<n<1M
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""The GermEval 2014 NER Shared Task dataset.""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{benikova-etal-2014-nosta, | |
title = {NoSta-D Named Entity Annotation for German: Guidelines and Dataset}, | |
author = {Benikova, Darina and | |
Biemann, Chris and | |
Reznicek, Marc}, | |
booktitle = {Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)}, | |
month = {may}, | |
year = {2014}, | |
address = {Reykjavik, Iceland}, | |
publisher = {European Language Resources Association (ELRA)}, | |
url = {http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf}, | |
pages = {2524--2531}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
The GermEval 2014 NER Shared Task builds on a new dataset with German Named Entity annotation with the following properties:\ | |
- The data was sampled from German Wikipedia and News Corpora as a collection of citations.\ | |
- The dataset covers over 31,000 sentences corresponding to over 590,000 tokens.\ | |
- The NER annotation uses the NoSta-D guidelines, which extend the Tübingen Treebank guidelines,\ | |
using four main NER categories with sub-structure, and annotating embeddings among NEs\ | |
such as [ORG FC Kickers [LOC Darmstadt]]. | |
""" | |
_URLS = { | |
"train": "https://drive.google.com/uc?export=download&id=1Jjhbal535VVz2ap4v4r_rN1UEHTdLK5P", | |
"dev": "https://drive.google.com/uc?export=download&id=1ZfRcQThdtAR5PPRjIDtrVP7BtXSCUBbm", | |
"test": "https://drive.google.com/uc?export=download&id=1u9mb7kNJHWQCWyweMDRMuTFoOHOfeBTH", | |
} | |
class GermEval14Config(datasets.BuilderConfig): | |
"""BuilderConfig for GermEval 2014.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for GermEval 2014. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(GermEval14Config, self).__init__(**kwargs) | |
class GermEval14(datasets.GeneratorBasedBuilder): | |
"""GermEval 2014 NER Shared Task dataset.""" | |
BUILDER_CONFIGS = [ | |
GermEval14Config( | |
name="germeval_14", version=datasets.Version("2.0.0"), description="GermEval 2014 NER Shared Task dataset" | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"source": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-LOC", | |
"I-LOC", | |
"B-LOCderiv", | |
"I-LOCderiv", | |
"B-LOCpart", | |
"I-LOCpart", | |
"B-ORG", | |
"I-ORG", | |
"B-ORGderiv", | |
"I-ORGderiv", | |
"B-ORGpart", | |
"I-ORGpart", | |
"B-OTH", | |
"I-OTH", | |
"B-OTHderiv", | |
"I-OTHderiv", | |
"B-OTHpart", | |
"I-OTHpart", | |
"B-PER", | |
"I-PER", | |
"B-PERderiv", | |
"I-PERderiv", | |
"B-PERpart", | |
"I-PERpart", | |
] | |
) | |
), | |
"nested_ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-LOC", | |
"I-LOC", | |
"B-LOCderiv", | |
"I-LOCderiv", | |
"B-LOCpart", | |
"I-LOCpart", | |
"B-ORG", | |
"I-ORG", | |
"B-ORGderiv", | |
"I-ORGderiv", | |
"B-ORGpart", | |
"I-ORGpart", | |
"B-OTH", | |
"I-OTH", | |
"B-OTHderiv", | |
"I-OTHderiv", | |
"B-OTHpart", | |
"I-OTHpart", | |
"B-PER", | |
"I-PER", | |
"B-PERderiv", | |
"I-PERderiv", | |
"B-PERpart", | |
"I-PERpart", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://sites.google.com/site/germeval2014ner/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) | |
current_source = "" | |
current_tokens = [] | |
current_ner_tags = [] | |
current_nested_ner_tags = [] | |
sentence_counter = 0 | |
for row in data: | |
if row: | |
if row[0] == "#": | |
current_source = " ".join(row[1:]) | |
continue | |
id_, token, label, nested_label = row[:4] | |
current_tokens.append(token) | |
current_ner_tags.append(label) | |
current_nested_ner_tags.append(nested_label) | |
else: | |
# New sentence | |
if not current_tokens: | |
# Consecutive empty lines will cause empty sentences | |
continue | |
assert len(current_tokens) == len(current_ner_tags), "💔 between len of tokens & labels" | |
assert len(current_ner_tags) == len( | |
current_nested_ner_tags | |
), "💔 between len of labels & nested labels" | |
assert current_source, "💥 Source for new sentence was not set" | |
sentence = ( | |
sentence_counter, | |
{ | |
"id": str(sentence_counter), | |
"tokens": current_tokens, | |
"ner_tags": current_ner_tags, | |
"nested_ner_tags": current_nested_ner_tags, | |
"source": current_source, | |
}, | |
) | |
sentence_counter += 1 | |
current_tokens = [] | |
current_ner_tags = [] | |
current_nested_ner_tags = [] | |
current_source = "" | |
yield sentence | |
# Don't forget last sentence in dataset 🧐 | |
yield sentence_counter, { | |
"id": str(sentence_counter), | |
"tokens": current_tokens, | |
"ner_tags": current_ner_tags, | |
"nested_ner_tags": current_nested_ner_tags, | |
"source": current_source, | |
} | |