louisbrulenaudet commited on
Commit
21c086d
1 Parent(s): f76d2c5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -19
README.md CHANGED
@@ -86,8 +86,6 @@ By providing a standardized dataset of global legal texts, we aim to accelerate
86
 
87
  ## Dataset Structure
88
 
89
- # Dataset Structure
90
-
91
  The dataset contains the following columns:
92
 
93
  1. **jurisdiction**: Capitalized ISO 3166-1 alpha-2 code representing the country or jurisdiction. This column is useful when stacking data from different jurisdictions.
@@ -107,7 +105,9 @@ The dataset contains the following columns:
107
  15. **formatted_date**: The publication date formatted as 'YYYY-MM-DD HH:MM:SS', derived from the 'date_publication' column.
108
 
109
  This structure ensures comprehensive metadata for each legal document, facilitating easier data management, cross-referencing, and analysis across different jurisdictions and languages.
110
- Easy-to-use script for hashing the `document`:
 
 
111
 
112
  ```python
113
  import hashlib
@@ -137,9 +137,86 @@ def hash(
137
  dataset = dataset.map(lambda x: {"hash": hash(x["document"])})
138
  ```
139
 
140
- ## Country-based Splits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
- The dataset uses country-based splits to organize legal documents from different jurisdictions. Each split is identified by the ISO 3166-1 alpha-2 code of the corresponding country.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
  ### ISO 3166-1 alpha-2 Codes
145
 
@@ -156,20 +233,6 @@ Some examples of ISO 3166-1 alpha-2 codes:
156
 
157
  Before submitting a new split, please make sure the proposed split fits within the ISO code for the related country.
158
 
159
- ### Accessing Country-specific Data
160
-
161
- To access legal documents for a specific country, you can use the country's ISO 3166-1 alpha-2 code as the split name when loading the dataset. Here's an example:
162
-
163
- ```python
164
- from datasets import load_dataset
165
-
166
- # Load the entire dataset
167
- dataset = load_dataset("HFforLegal/laws")
168
-
169
- # Access the French legal documents
170
- fr_dataset = dataset['fr']
171
- ```
172
-
173
  ## Ethical Considerations
174
 
175
  While this dataset provides a valuable resource for legal AI development, users should be aware of the following ethical considerations:
 
86
 
87
  ## Dataset Structure
88
 
 
 
89
  The dataset contains the following columns:
90
 
91
  1. **jurisdiction**: Capitalized ISO 3166-1 alpha-2 code representing the country or jurisdiction. This column is useful when stacking data from different jurisdictions.
 
105
  15. **formatted_date**: The publication date formatted as 'YYYY-MM-DD HH:MM:SS', derived from the 'date_publication' column.
106
 
107
  This structure ensures comprehensive metadata for each legal document, facilitating easier data management, cross-referencing, and analysis across different jurisdictions and languages.
108
+ Easy-to-use script for hashing the `text`:
109
+
110
+ Datasets version:
111
 
112
  ```python
113
  import hashlib
 
137
  dataset = dataset.map(lambda x: {"hash": hash(x["document"])})
138
  ```
139
 
140
+ Polars version
141
+
142
+ ```python
143
+ import polars as pl
144
+ import hashlib
145
+
146
+ def add_text_hash_column(
147
+ df: pl.DataFrame,
148
+ text_column: str = "text",
149
+ hash_column: str = "text_hash"
150
+ ) -> pl.DataFrame:
151
+ """
152
+ Add a column with SHA-256 hash values of a specified text column to a Polars DataFrame.
153
+
154
+ This function computes the SHA-256 hash of the values in the specified text column
155
+ and adds it as a new column to the DataFrame.
156
 
157
+ Parameters
158
+ ----------
159
+ df : pl.DataFrame
160
+ The input Polars DataFrame.
161
+ text_column : str, optional
162
+ The name of the column containing the text to be hashed (default is "text").
163
+ hash_column : str, optional
164
+ The name of the new column to be added with hash values (default is "text_hash").
165
+
166
+ Returns
167
+ -------
168
+ pl.DataFrame
169
+ A new DataFrame with the hash column added.
170
+
171
+ Examples
172
+ --------
173
+ >>> import polars as pl
174
+ >>> df = pl.DataFrame({"text": ["Hello", "World", "OpenAI"]})
175
+ >>> df_with_hash = add_text_hash_column(df)
176
+ >>> print(df_with_hash)
177
+ shape: (3, 2)
178
+ ┌────────┬──────────────────────────────────────────────────────────────────┐
179
+ │ text ┆ text_hash │
180
+ │ --- ┆ --- │
181
+ │ str ┆ str │
182
+ ╞════════╪══════════════════════════════════════════════════════════════════╡
183
+ │ Hello ┆ 185f8db32271fe25f561a6fc938b2e264306ec304eda518007d1764826381969 │
184
+ │ World ┆ 78ae647dc5544d227130a0682a51e30bc7777fbb6d8a8f17007463a3ecd1d524 │
185
+ │ OpenAI ┆ 0c3f4a61f7e5d29abc29d63f1a0cad36c49ffd5b5c0b5b38ce0c7aa0bdc94696 │
186
+ └────────┴──────────────────────────────────────────────────────────────────┘
187
+
188
+ Raises
189
+ ------
190
+ ValueError
191
+ If the specified text_column is not found in the DataFrame.
192
+ """
193
+ if text_column not in df.columns:
194
+ raise ValueError(f"Column '{text_column}' not found in the DataFrame.")
195
+
196
+ return df.with_columns(
197
+ pl.col(text_column)
198
+ .map_elements(lambda x: hashlib.sha256(str(x).encode()).hexdigest())
199
+ .alias(hash_column)
200
+ )
201
+
202
+ dataframe = add_text_hash_column(dataframe)
203
+ ```
204
+
205
+ ## Upload to the Hub
206
+
207
+ Here is a code snippet to push dedicated config (in this example for France) to the HF hub:
208
+
209
+ ```python
210
+ hf_dataset.push_to_hub(
211
+ repo_id="HFforLegal/laws-new",
212
+ config_name="fr",
213
+ split="train",
214
+ )
215
+ ```
216
+
217
+ ## Country-based Configs
218
+
219
+ The dataset uses country-based configs to organize legal documents from different jurisdictions. Each config is identified by the ISO 3166-1 alpha-2 code of the corresponding country.
220
 
221
  ### ISO 3166-1 alpha-2 Codes
222
 
 
233
 
234
  Before submitting a new split, please make sure the proposed split fits within the ISO code for the related country.
235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  ## Ethical Considerations
237
 
238
  While this dataset provides a valuable resource for legal AI development, users should be aware of the following ethical considerations: