File size: 13,103 Bytes
8b6b3f1 9100988 8b6b3f1 9100988 8b6b3f1 325e028 8b6b3f1 325e028 8b6b3f1 325e028 8b6b3f1 325e028 1258ac1 325e028 8b6b3f1 325e028 8b6b3f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""TODO: Add a description here."""
from __future__ import absolute_import, division, print_function
import json
import os
import datetime
import pandas as pd
import numpy as np
from pathlib import Path
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
authors={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
_DESCRIPTION = """TODO: Add description"""
# # URLs for production
# _METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata-2021-02-10.feather"
# # _METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata-2021-01-21.feather"
# _DATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/distilled-2021-01-07.tar"
# _DATA_SUBFOLDER_NAME = 'distilled'
# # URLs for debugging
# _METADATA_URL = _DEBUG_METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata_debug-2021-02-10.feather"
# _DATA_URL = _DEBUG_DATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/distilled_debug-2021-01-07.tar"
# _DATA_SUBFOLDER_NAME = _DATA_SUBFOLDER_NAME = 'debug_distilled'
# URLs for figuring out the Huggingface Hub
_METADATA_URL = "https://huggingface.co/datasets/greeneggsandyaml/test-dataset-debug/resolve/main/metadata--Jan2016--2021-02-10.feather"
_DATA_URL = "https://huggingface.co/datasets/greeneggsandyaml/test-dataset-debug/resolve/main/json-files-Jan2016.tar"
_DATA_SUBFOLDER_NAME = 'json-files-Jan2016'
RANDOM_STATE = 1729
# Names of features
_FEATURES = [
"patent_number",
"decision",
"title",
"abstract",
"claims",
"background",
"summary",
"description",
"cpc_label",
"ipc_label",
"filing_date",
"patent_issue_date",
"date_published",
"examiner_id"
]
def str_to_date(s):
"""A helper function to convert strings to dates"""
return datetime.datetime.strptime(s, '%Y-%m-%d')
class PatentsConfig(datasets.BuilderConfig):
"""BuilderConfig for Patents"""
def __init__(
self,
ipcr_label: str = None, # 'G06F',
cpc_label: str = None, # 'G06F',
train_filing_start_date: str = None,
train_filing_end_date: str = None,
val_filing_start_date: str = None,
val_filing_end_date: str = None,
query_string: str = None,
val_set_balancer=False,
uniform_split=False,
train_only=False,
**kwargs
):
"""
If train_filing_end_date is None, then a random train-val split will be used. If it is
specified, then the specified date range will be used for the split. If train_filing_end_date
if specified and val_filing_start_date is not specifed, then val_filing_start_date defaults to
train_filing_end_date.
Args:
ipcr_label: International Patent Classification code
cpc_label: Cooperative Patent Classification code
train_filing_start_date: Start date for patents in train set (and val set if random split is used)
train_filing_end_date: End date for patents in train set
val_filing_start_date: Start date for patents in val set
val_filing_end_date: End date for patents in val set (and train set if random split is used)
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
self.ipcr_label = ipcr_label
self.cpc_label = cpc_label
self.train_filing_start_date = train_filing_start_date
self.train_filing_end_date = train_filing_end_date
self.val_filing_start_date = val_filing_start_date
self.val_filing_end_date = val_filing_end_date
self.query_string = query_string
self.val_set_balancer = val_set_balancer
self.uniform_split = uniform_split
self.train_only = train_only
class Patents(datasets.GeneratorBasedBuilder):
"""TODO: Add description"""
VERSION = datasets.Version("1.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
BUILDER_CONFIG_CLASS = PatentsConfig
# BUILDER_CONFIGS = [
# PatentsConfig(name="my_dataset_" + size, description="A small dataset", data_size=size)
# for size in ["small", "medium", "large"]
# ]
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(
{k: datasets.Value("string") for k in _FEATURES}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=("claims", "decision"),
# TODO: Homepage of the dataset for documentation
homepage="https://huggingface.co/great-new-dataset",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators."""
print(f'Loading dataset with config: {self.config}')
# Download metadata
# NOTE: data_files is a path to a pickled pandas DataFrame
if self.config.data_files is None:
print(f'Loading or downloading metadata file: {_METADATA_URL}')
metadata_file = dl_manager.download_and_extract(_METADATA_URL)
else:
print(f'Using metadata file: {self.config.data_files}')
metadata_file = Path(self.config.data_files)
# Download data
# NOTE: data_dir is a path to a directory of json files, with one
# json file per patent application
if self.config.data_dir is None:
print('Loading or downloading data. If downloading, watch out! This is a huge file (360GB)!')
json_dir = Path(dl_manager.download_and_extract(_DATA_URL))
# NOTE: The extracted path contains a subfolder
json_dir = json_dir / _DATA_SUBFOLDER_NAME
else:
json_dir = Path(self.config.data_dir)
# Load metadata file
print(f'Reading metadata file: {metadata_file}')
df = pd.read_feather(metadata_file) # pd.read_pickle(metadata_file) #
# Filter based on ICPR / CPC label
if self.config.ipcr_label:
print(f'Filtering by IPCR label: {self.config.ipcr_label}')
df = df[df['main_ipcr_label'].str.startswith(self.config.ipcr_label)]
elif self.config.cpc_label:
print(f'Filtering by CPC label: {self.config.cpc_label}')
df = df[df['main_cpc_label'].str.startswith(self.config.cpc_label)]
# Filter metadata based on arbitrary query string
# TODO(suproteem): remove for production
if self.config.query_string:
df = df.query(self.config.query_string)
# Return only one dataset
if self.config.train_only:
if self.config.train_filing_start_date:
print(f'Filtering by train filing start date: {self.config.train_filing_start_date}')
df = df[df['filing_date'] >= self.config.train_filing_start_date]
if self.config.train_filing_end_date:
print(f'Filtering by train filing end date: {self.config.train_filing_end_date}')
df = df[df['filing_date'] <= self.config.train_filing_end_date]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs=dict( # kwargs passed to _generate_examples
df=df,
json_dir=json_dir,
split='train',
),
)
]
# Train-validation split (either uniform or by date)
if self.config.uniform_split:
# Assumes that training_start_data < val_end_date
if self.config.train_filing_start_date:
df = df[df['filing_date'] >= self.config.train_filing_start_date]
if self.config.val_filing_end_date:
df = df[df['filing_date'] <= self.config.val_filing_end_date]
df = df.sample(frac=1.0, random_state=RANDOM_STATE)
num_train_samples = int(len(df) * 0.85)
train_df = df.iloc[0:num_train_samples]
val_df = df.iloc[num_train_samples:-1]
else:
# Check
if not (self.config.train_filing_start_date and self.config.train_filing_end_date and
self.config.val_filing_start_date and self.config.train_filing_end_date):
raise ValueError("Please either use uniform_split or specify your exact \
training and validation split dates.")
# Does not assume that training_start_data < val_end_date
print(f'Filtering train dataset by filing start date: {self.config.train_filing_start_date}')
print(f'Filtering train dataset by filing end date: {self.config.train_filing_end_date}')
print(f'Filtering val dataset by filing start date: {self.config.val_filing_start_date}')
print(f'Filtering val dataset by filing end date: {self.config.val_filing_end_date}')
train_df = df[
(df['filing_date'] >= self.config.train_filing_start_date) &
(df['filing_date'] < self.config.train_filing_end_date)
]
val_df = df[
(df['filing_date'] >= self.config.val_filing_start_date) &
(df['filing_date'] < self.config.val_filing_end_date)
]
# TODO: Can make this step faster
if self.config.val_set_balancer:
rejected_df = val_df[val_df.status == 'REJECTED']
num_rejected = len(rejected_df)
accepted_df = val_df[val_df.status == 'ACCEPTED']
num_accepted = len(accepted_df)
if num_rejected < num_accepted:
accepted_df = accepted_df.sample(frac=1.0, random_state=RANDOM_STATE) # shuffle(accepted_df)
accepted_df = accepted_df[:num_rejected]
else:
rejected_df = rejected_df.sample(frac=1.0, random_state=RANDOM_STATE) # shuffle(rejected_df)
rejected_df = rejected_df[:num_accepted]
val_df = pd.concat([rejected_df, accepted_df])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs=dict( # kwargs passed to _generate_examples
df=train_df,
json_dir=json_dir,
split='train',
),
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs=dict(
df=val_df,
json_dir=json_dir,
split='val',
),
),
]
def _generate_examples(self, df, json_dir, split):
""" Yields examples by loading JSON files containing patent applications. """
# NOTE: df.itertuples() is way faster than df.iterrows()
for id_, x in enumerate(df.itertuples()):
# JSON files are named by application number (unique)
application_number = x.application_number
filepath = json_dir / (application_number + '.json')
try:
with open(filepath, 'r') as f:
patent = json.load(f)
except Exception as e:
print('------------')
print(f'ERROR WITH {filepath}\n')
print(repr(e))
print()
yield id_, {k: "error" for k in _FEATURES}
# Most up-to-date-decision in meta dataframe
decision = x.decision
yield id_, {
"patent_number": application_number,
"decision": decision,
"title": patent["title"],
"abstract": patent["abstract"],
"claims": patent["claims"],
"description": patent["full_description"],
"background": patent["background"],
"summary": patent["summary"],
"cpc_label": patent["main_cpc_label"],
'filing_date': patent['filing_date'],
'patent_issue_date': patent['patent_issue_date'],
'date_published': patent['date_published'],
'examiner_id': patent['examiner_id'],
"ipc_label": patent["main_ipcr_label"],
# "all_cpc_labels": patent["cpc_labels"], # these are lists, ignoring for now
# 'inventor_list': patent['inventor_list'], # these are lists, ignoring for now
}
|