File size: 6,418 Bytes
6fad1a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
"""
Dataset loading tests. Run with:
PYTHONPATH=. pytest tests/tests.py -vvrP
Additional notes about pytest:
- Skip a test with @pytest.mark.skip(reason='skipping')
- Use `-vvrP` to print stdout
"""
import pdb
import os
from pathlib import Path
from pprint import pprint
import pytest
import torch
import torch.nn.functional as F
import torch.utils.data
from datasets import load_dataset
def test_dataset_sample():
"""Load the sample dataset"""
root = os.getcwd()
dataset_dict = load_dataset(
'hupd.py',
name='sample',
data_files=os.path.join(root, "hupd_metadata_jan16_2022-02-22.feather"),
data_dir=os.path.join(root, "data/sample"),
uniform_split=True
)
for name, dataset in dataset_dict.items():
print(f'Dataset {name}: {len(dataset)}')
import pdb; pdb.set_trace()
if __name__ == '__main__':
test_dataset_sample()
# # # ----- Data loading example 1 ------
# # # To load a dataset from files directly, pass in the
# # # data_files and data_dir parameters. For example:
# # # ----- Data loading example 2 ------
# # # It is simple to specify an IPCR or CPC label and
# # # a date range for training/validation. For example:
# # dataset_dict = load_dataset(
# # 'patents.py',
# # data_files="/blob/uspto/data/codebooks/data_link_new.pkl",
# # data_dir="/blob/uspto/data/distilled",
# # ipcr_label='G01T', #'G06F',
# # cpc_label=None,
# # train_filing_start_date=None,
# # train_filing_end_date=None,
# # val_filing_start_date=None,
# # val_filing_end_date=None,
# # )
# # # ----- Data loading example 3 ------
# # If you do not specify the data_files and data_dir parameters, the
# # dataset will be downloaded automatically for you. For example:
# dataset_dict = load_dataset(
# 'patents.py',
# data_dir="/blob/uspto/data/distilled",
# cache_dir='/blob/data/patents/distilled/distilled/huggingface-dataset/cache',
# ipcr_label=None, # 'G01T', #'G06F', # cpc_label='G01T',
# train_filing_start_date='2016-01-01',
# train_filing_end_date='2016-01-05',
# val_filing_start_date='2017-01-01',
# val_filing_end_date='2017-01-05',
# )
# def combine_two_sections(tokenizer, dataset, s1, s2, new_tokens):
# # Add the seperation token
# if tokenizer.sep_token != '[SEP]':
# tokenizer.add_tokens(['[SEP]'], special_tokens=True)
# tokenizer.sep_token = '[SEP]'
# print(f'[OLD] len(tokenizer.vocab) = {len(tokenizer)}')
# tokenizer.add_tokens(new_tokens + [s1.upper(), 'TITLE', 'YEAR', s2.upper()])
# print(f'[NEW] len(tokenizer.vocab) = {len(tokenizer)}')
# dataset = dataset.map(
# # lambda e: {f'{s1}_{s2}': f'[SEP] {s1.upper()} ' + e[s1 + '_label'][:4] + ' [SEP] ' + e[s2]})
# lambda e: {f'{s1}_{s2}': f'[SEP] TITLE ' + e['title'] + '. YEAR ' + e['filing_date'][:4] + f'. {s1.upper()} ' + e[s1 + '_label'][:4] + f' [SEP] {s2.upper()} ' + e[s2]})
# return tokenizer, dataset
# def convert_ids_to_string(tokenizer, input):
# return ' '.join(tokenizer.convert_ids_to_tokens(input))
# conditional = 'ipc'
# section = 'abstract'
# # Print some metadata
# print('Dataset dictionary contents:')
# pprint(dataset_dict)
# print('Dataset dictionary cached to:')
# pprint(dataset_dict.cache_files)
# print(f'Train dataset size: {dataset_dict["train"].shape}')
# print(f'Validation dataset size: {dataset_dict["validation"].shape}')
# # Example: preprocess dataset "decision" feature for classification
# decision_to_str = {
# 'REJECTED': 0,
# 'ACCEPTED': 1,
# 'PENDING': 2,
# 'CONT-REJECTED': 3,
# 'CONT-ACCEPTED': 4,
# 'CONT-PENDING': 5
# }
# def map_decision_to_string(example):
# # NOTE: returned dict updates the example
# return {'decision': decision_to_str[example['decision']]}
# # Performing the remapping means iterating over the dataset
# # NOTE: This stores the updated table in a cache file indexed
# # by the current state and the mapping function
# train_dataset = dataset_dict['train'].map(map_decision_to_string)
# print('Processed train dataset cached to: ')
# pprint(train_dataset.cache_files)
# # Example: preprocess dataset "abstract" field using huggingface
# # tokenizers for classification. We truncate at the max token length.
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained('roberta-base')
# # def map_cpc_label(example):
# # # NOTE: returned dict updates the example
# # # print(tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(example['cpc_label'][:4])))
# # return {'cpc_label': tokenizer.convert_tokens_to_ids(example['cpc_label'][:4])}
# # train_dataset = train_dataset.map(map_cpc_label)
# if conditional:
# f = open(f'{conditional}_labels.txt', 'r')
# new_tokens = f.read().split('\n')
# tokenizer, train_dataset = combine_two_sections(tokenizer, train_dataset, conditional, section, new_tokens)
# section = f'{conditional}_{section}'
# # We tokenize in batches, so it is actually quite fast
# print('Tokenizing')
# train_dataset = train_dataset.map(
# lambda e: tokenizer((e[section]), truncation=True, padding='max_length'),
# batched=True)
# print('Processed train dataset cached to: ')
# pprint(train_dataset.cache_files)
# print('Processed train dataset columns: ')
# pprint(train_dataset.column_names)
# # Convert to PyTorch Dataset
# # NOTE: If you also want to return string columns (as a list), just
# # pass `output_all_columns=True` to the dataset
# train_dataset.set_format(type='torch',
# columns=['input_ids', 'attention_mask', 'decision'])
# # Standard PyTorch DataLoader
# from torch.utils.data import DataLoader
# train_dataloader = DataLoader(train_dataset, batch_size=16)
# print('Shapes of items in batch from standard PyTorch DataLoader:')
# pprint({k: v.shape for k, v in next(iter(train_dataloader)).items()})
# print('Batch from standard PyTorch DataLoader:')
# batch = next(iter(train_dataloader))
# pprint(batch['input_ids'])
# pprint(batch['decision'])
# # Print examples
# print(convert_ids_to_string(tokenizer, batch['input_ids'][0]))
# pprint(batch['input_ids'][0][:20])
# # vocab = batch['input_ids'][0][:20]
# # for elt in vocab:
# # print(f'{elt}: {convert_ids_to_string(tokenizer, [elt])}')
# print(tokenizer.decode(batch['input_ids'][0]))
# print('All done')
|