File size: 6,418 Bytes
6fad1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Dataset loading tests. Run with: 
    PYTHONPATH=. pytest tests/tests.py -vvrP

Additional notes about pytest: 
    - Skip a test with @pytest.mark.skip(reason='skipping')
    - Use `-vvrP` to print stdout
"""
import pdb
import os
from pathlib import Path
from pprint import pprint

import pytest
import torch
import torch.nn.functional as F
import torch.utils.data
from datasets import load_dataset


def test_dataset_sample():
    """Load the sample dataset"""
    root = os.getcwd()
    dataset_dict = load_dataset(
        'hupd.py',
        name='sample',
        data_files=os.path.join(root, "hupd_metadata_jan16_2022-02-22.feather"),
        data_dir=os.path.join(root, "data/sample"),
        uniform_split=True
    )
    for name, dataset in dataset_dict.items():
        print(f'Dataset {name}: {len(dataset)}')
        import pdb; pdb.set_trace()


if __name__ == '__main__':
    test_dataset_sample()


# # # ----- Data loading example 1 ------
# # # To load a dataset from files directly, pass in the
# # # data_files and data_dir parameters. For example:

# # # ----- Data loading example 2 ------
# # # It is simple to specify an IPCR or CPC label and
# # # a date range for training/validation. For example:
# # dataset_dict = load_dataset(
# #     'patents.py',
# #     data_files="/blob/uspto/data/codebooks/data_link_new.pkl",
# #     data_dir="/blob/uspto/data/distilled",
# #     ipcr_label='G01T', #'G06F',
# #     cpc_label=None,
# #     train_filing_start_date=None,
# #     train_filing_end_date=None,
# #     val_filing_start_date=None,
# #     val_filing_end_date=None,
# # )

# # # ----- Data loading example 3 ------
# # If you do not specify the data_files and data_dir parameters, the
# # dataset will be downloaded automatically for you. For example:
# dataset_dict = load_dataset(
#     'patents.py',
#     data_dir="/blob/uspto/data/distilled",
#     cache_dir='/blob/data/patents/distilled/distilled/huggingface-dataset/cache',
#     ipcr_label=None,  # 'G01T', #'G06F',  # cpc_label='G01T',
#     train_filing_start_date='2016-01-01',
#     train_filing_end_date='2016-01-05',
#     val_filing_start_date='2017-01-01',
#     val_filing_end_date='2017-01-05',
# )


# def combine_two_sections(tokenizer, dataset, s1, s2, new_tokens):

#     # Add the seperation token
#     if tokenizer.sep_token != '[SEP]':
#         tokenizer.add_tokens(['[SEP]'], special_tokens=True)
#         tokenizer.sep_token = '[SEP]'

#     print(f'[OLD] len(tokenizer.vocab) = {len(tokenizer)}')
#     tokenizer.add_tokens(new_tokens + [s1.upper(), 'TITLE', 'YEAR', s2.upper()])
#     print(f'[NEW] len(tokenizer.vocab) = {len(tokenizer)}')
#     dataset = dataset.map(
#         # lambda e: {f'{s1}_{s2}':  f'[SEP] {s1.upper()} ' + e[s1 + '_label'][:4] + ' [SEP] ' + e[s2]})
#         lambda e: {f'{s1}_{s2}': f'[SEP] TITLE ' + e['title'] + '. YEAR ' + e['filing_date'][:4] + f'. {s1.upper()} ' + e[s1 + '_label'][:4] + f' [SEP] {s2.upper()} ' + e[s2]})
#     return tokenizer, dataset


# def convert_ids_to_string(tokenizer, input):
#     return ' '.join(tokenizer.convert_ids_to_tokens(input))


# conditional = 'ipc'
# section = 'abstract'

# # Print some metadata
# print('Dataset dictionary contents:')
# pprint(dataset_dict)
# print('Dataset dictionary cached to:')
# pprint(dataset_dict.cache_files)
# print(f'Train dataset size: {dataset_dict["train"].shape}')
# print(f'Validation dataset size: {dataset_dict["validation"].shape}')

# # Example: preprocess dataset "decision" feature for classification
# decision_to_str = {
#     'REJECTED': 0,
#     'ACCEPTED': 1,
#     'PENDING': 2,
#     'CONT-REJECTED': 3,
#     'CONT-ACCEPTED': 4,
#     'CONT-PENDING': 5
# }


# def map_decision_to_string(example):
#     # NOTE: returned dict updates the example
#     return {'decision': decision_to_str[example['decision']]}


# # Performing the remapping means iterating over the dataset
# # NOTE: This stores the updated table in a cache file indexed
# # by the current state and the mapping function
# train_dataset = dataset_dict['train'].map(map_decision_to_string)
# print('Processed train dataset cached to: ')
# pprint(train_dataset.cache_files)

# # Example: preprocess dataset "abstract" field using huggingface
# # tokenizers for classification. We truncate at the max token length.
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained('roberta-base')

# # def map_cpc_label(example):
# #     # NOTE: returned dict updates the example
# #     # print(tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(example['cpc_label'][:4])))
# #     return {'cpc_label': tokenizer.convert_tokens_to_ids(example['cpc_label'][:4])}
# # train_dataset = train_dataset.map(map_cpc_label)

# if conditional:
#     f = open(f'{conditional}_labels.txt', 'r')
#     new_tokens = f.read().split('\n')
#     tokenizer, train_dataset = combine_two_sections(tokenizer, train_dataset, conditional, section, new_tokens)
#     section = f'{conditional}_{section}'

# # We tokenize in batches, so it is actually quite fast
# print('Tokenizing')
# train_dataset = train_dataset.map(
#     lambda e: tokenizer((e[section]), truncation=True, padding='max_length'),
#     batched=True)
# print('Processed train dataset cached to: ')
# pprint(train_dataset.cache_files)
# print('Processed train dataset columns: ')
# pprint(train_dataset.column_names)

# # Convert to PyTorch Dataset
# # NOTE: If you also want to return string columns (as a list), just
# # pass `output_all_columns=True` to the dataset
# train_dataset.set_format(type='torch',
#                          columns=['input_ids', 'attention_mask', 'decision'])

# # Standard PyTorch DataLoader
# from torch.utils.data import DataLoader
# train_dataloader = DataLoader(train_dataset, batch_size=16)
# print('Shapes of items in batch from standard PyTorch DataLoader:')
# pprint({k: v.shape for k, v in next(iter(train_dataloader)).items()})
# print('Batch from standard PyTorch DataLoader:')
# batch = next(iter(train_dataloader))
# pprint(batch['input_ids'])
# pprint(batch['decision'])

# # Print examples
# print(convert_ids_to_string(tokenizer, batch['input_ids'][0]))
# pprint(batch['input_ids'][0][:20])
# # vocab = batch['input_ids'][0][:20]
# # for elt in vocab:
# #     print(f'{elt}: {convert_ids_to_string(tokenizer, [elt])}')
# print(tokenizer.decode(batch['input_ids'][0]))

# print('All done')