---
language:
- eu
configs:
- config_name: booktegi
data_files:
- split: train
path: booktegi/train.jsonl.gz
- split: validation
path: booktegi/valid.jsonl.gz
- split: test
path: booktegi/test.jsonl.gz
- config_name: colossal-oscar
data_files:
- split: train
path: colossal-oscar/train.jsonl.gz
- split: validation
path: colossal-oscar/valid.jsonl.gz
- split: test
path: colossal-oscar/test.jsonl.gz
- config_name: culturax
data_files:
- split: train
path: CulturaX/train.jsonl.gz
- split: validation
path: CulturaX/valid.jsonl.gz
- split: test
path: CulturaX/test.jsonl.gz
- config_name: egunkaria
data_files:
- split: train
path: egunkaria/train.jsonl.gz
- split: validation
path: egunkaria/valid.jsonl.gz
- split: test
path: egunkaria/test.jsonl.gz
- config_name: euscrawl-v1.1
data_files:
- split: train
path: euscrawl-v1.1/train.jsonl.gz
- split: validation
path: euscrawl-v1.1/valid.jsonl.gz
- split: test
path: euscrawl-v1.1/test.jsonl.gz
- config_name: hplt-v1
data_files:
- split: train
path: hplt-v1/train.jsonl.gz
- split: validation
path: hplt-v1/valid.jsonl.gz
- split: test
path: hplt-v1/test.jsonl.gz
- config_name: wikipedia
data_files:
- split: train
path: wikipedia/train.jsonl.gz
- split: validation
path: wikipedia/valid.jsonl.gz
- split: test
path: wikipedia/test.jsonl.gz
task_categories:
- fill-mask
- text-generation
---
# Latxa Corpus v1.1
This is the training corpus of the Latxa v1.1 base language model, a LLama 2 model trained on Basque text.
- **Repository:** [https://github.com/hitz-zentroa/latxa](https://github.com/hitz-zentroa/latxa)
- **Papers:** [Latxa: An Open Language Model and Evaluation Suite for Basque](https://arxiv.org/)
- **Curated by:** HiTZ Research Center & IXA Research group (University of the Basque Country UPV/EHU)
- **Language(s):** eu
## Summary
Latxa's training corpus combines various existing datasets, as well as some new ones that we hereby release.
The raw document mix has been deduplicated and processed; here you'll find the final version of the corpus.
Our data sources are introduced briefly below.
For more details, consult our [paper]().
* **Euscrawl v1.1 [new]**: An updated version of [EusCrawl v1](https://www.ixa.eus/euscrawl/) [1], including new content up to November 2023.
* **Egunkaria [new]**: Content from the Egunkaria daily newspaper.
* **Booktegi [new]**: Content from [https://www.booktegi.eus/](https://www.booktegi.eus/) EPUB books.
* **Wikipedia**: Basque Wikipedia's [dump](https://dumps.wikimedia.org/) from November 2023.
* **CulturaX**: The Basque portion of the [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) corpus [2].
* **Colossal OSCAR**: The Basque portion of several [Colossal OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0) releases.
* **HPLT v1**: The Basque portion of the [HPLT v1](https://hplt-project.org/datasets/v1) [3] corpus.
## Statistics
The size of each dataset in terms of number of documents can be found below:
| | Train | Valid | Test |
|----------------|----------:|-------:|-------:|
| CulturaX | 1,283,429 | 13,096 | 13,098 |
| EusCrawl v1.1 | 1,758,084 | 17,861 | 17,736 |
| HPLT v1 | 367,238 | 3,797 | 3,699 |
| Colossal OSCAR | 233,753 | 2,483 | 2,276 |
| Wikipedia | 400,902 | 4,063 | 4,092 |
| Egunkaria | 172,876 | 1,766 | 1,764 |
| Booktegi | 161 | 4 | 1 |
## Citation
To cite our work, please use:
```bibtex
@misc{etxaniz2024latxa,
title={{L}atxa: An Open Language Model and Evaluation Suite for {B}asque},
author={Julen Etxaniz and Oscar Sainz and Naiara Perez and Itziar Aldabe and German Rigau and Eneko Agirre and Aitor Ormazabal and Mikel Artetxe and Aitor Soroa},
year={2024},
eprint={},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## References
[1] Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de Viñaspre, and Aitor Soroa. 2022.
[Does corpus quality really matter for low-resource languages?](https://doi.org/10.18653/v1/2022.emnlp-main.499).
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7383–7390, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.
[2] Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu Man, Nghia Trung Ngo, Franck Dernoncourt, Ryan A. Rossi, and Thien Huu Nguyen. 2023.
[CulturaX: A cleaned, enormous, and multilingual dataset for large language models in 167 languages](https://arxiv.org/abs/2309.09400).
arXiv preprint arXiv:2309.09400
[3] Mikko Aulamo, Nikolay Bogoychev, Shaoxiong Ji, Graeme Nail, Gema Ramírez-Sánchez, Jörg Tiedemann, Jelmer van der Linde, and Jaume Zaragoza. 2023.
[HPLT: High performance language technologies](https://aclanthology.org/2023.eamt-1.61).
In Proceedings of the 24th Annual Conference of the European Association for Machine Transla tion, pages 517–518, Tampere, Finland.
European Association for Machine Translation.