--- language: - eu configs: - config_name: booktegi data_files: - split: train path: booktegi/train.jsonl.gz - split: validation path: booktegi/valid.jsonl.gz - split: test path: booktegi/test.jsonl.gz - config_name: colossal-oscar data_files: - split: train path: colossal-oscar/train.jsonl.gz - split: validation path: colossal-oscar/valid.jsonl.gz - split: test path: colossal-oscar/test.jsonl.gz - config_name: culturax data_files: - split: train path: CulturaX/train.jsonl.gz - split: validation path: CulturaX/valid.jsonl.gz - split: test path: CulturaX/test.jsonl.gz - config_name: egunkaria data_files: - split: train path: egunkaria/train.jsonl.gz - split: validation path: egunkaria/valid.jsonl.gz - split: test path: egunkaria/test.jsonl.gz - config_name: euscrawl-v1.1 data_files: - split: train path: euscrawl-v1.1/train.jsonl.gz - split: validation path: euscrawl-v1.1/valid.jsonl.gz - split: test path: euscrawl-v1.1/test.jsonl.gz - config_name: hplt-v1 data_files: - split: train path: hplt-v1/train.jsonl.gz - split: validation path: hplt-v1/valid.jsonl.gz - split: test path: hplt-v1/test.jsonl.gz - config_name: wikipedia data_files: - split: train path: wikipedia/train.jsonl.gz - split: validation path: wikipedia/valid.jsonl.gz - split: test path: wikipedia/test.jsonl.gz task_categories: - fill-mask - text-generation --- # Latxa Corpus v1.1 This is the training corpus of the Latxa v1.1 base language model, a LLama 2 model trained on Basque text. - **Repository:** [https://github.com/hitz-zentroa/latxa](https://github.com/hitz-zentroa/latxa) - **Papers:** [Latxa: An Open Language Model and Evaluation Suite for Basque](https://arxiv.org/) - **Curated by:** HiTZ Research Center & IXA Research group (University of the Basque Country UPV/EHU) - **Language(s):** eu ## Summary Latxa's training corpus combines various existing datasets, as well as some new ones that we hereby release. The raw document mix has been deduplicated and processed; here you'll find the final version of the corpus. Our data sources are introduced briefly below. For more details, consult our [paper](). * **Euscrawl v1.1 [new]**: An updated version of [EusCrawl v1](https://www.ixa.eus/euscrawl/) [1], including new content up to November 2023. * **Egunkaria [new]**: Content from the Egunkaria daily newspaper. * **Booktegi [new]**: Content from [https://www.booktegi.eus/](https://www.booktegi.eus/) EPUB books. * **Wikipedia**: Basque Wikipedia's [dump](https://dumps.wikimedia.org/) from November 2023. * **CulturaX**: The Basque portion of the [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) corpus [2]. * **Colossal OSCAR**: The Basque portion of several [Colossal OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0) releases. * **HPLT v1**: The Basque portion of the [HPLT v1](https://hplt-project.org/datasets/v1) [3] corpus. ## Statistics The size of each dataset in terms of number of documents can be found below: | | Train | Valid | Test | |----------------|----------:|-------:|-------:| | CulturaX | 1,283,429 | 13,096 | 13,098 | | EusCrawl v1.1 | 1,758,084 | 17,861 | 17,736 | | HPLT v1 | 367,238 | 3,797 | 3,699 | | Colossal OSCAR | 233,753 | 2,483 | 2,276 | | Wikipedia | 400,902 | 4,063 | 4,092 | | Egunkaria | 172,876 | 1,766 | 1,764 | | Booktegi | 161 | 4 | 1 | ## Citation To cite our work, please use: ```bibtex @misc{etxaniz2024latxa, title={{L}atxa: An Open Language Model and Evaluation Suite for {B}asque}, author={Julen Etxaniz and Oscar Sainz and Naiara Perez and Itziar Aldabe and German Rigau and Eneko Agirre and Aitor Ormazabal and Mikel Artetxe and Aitor Soroa}, year={2024}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## References [1] Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de Viñaspre, and Aitor Soroa. 2022. [Does corpus quality really matter for low-resource languages?](https://doi.org/10.18653/v1/2022.emnlp-main.499). In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7383–7390, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics. [2] Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu Man, Nghia Trung Ngo, Franck Dernoncourt, Ryan A. Rossi, and Thien Huu Nguyen. 2023. [CulturaX: A cleaned, enormous, and multilingual dataset for large language models in 167 languages](https://arxiv.org/abs/2309.09400). arXiv preprint arXiv:2309.09400 [3] Mikko Aulamo, Nikolay Bogoychev, Shaoxiong Ji, Graeme Nail, Gema Ramírez-Sánchez, Jörg Tiedemann, Jelmer van der Linde, and Jaume Zaragoza. 2023. [HPLT: High performance language technologies](https://aclanthology.org/2023.eamt-1.61). In Proceedings of the 24th Annual Conference of the European Association for Machine Transla tion, pages 517–518, Tampere, Finland. European Association for Machine Translation.