# 从PyTorch DDP 到 Accelerate 到 Trainer,轻松掌握分布式训练 ## 概述 本教程假定你已经对于PyToch训练一个简单模型有一定的基础理解。本教程将展示使用3种封装层级不同的方法调用DDP(DistributedDataParallel)进程,在多个GPU上训练同一个模型: - 使用 `pytorch.distributed` 模块的原生pytorch DDP模块 - 使用 🤗Accelerate 对 `pytorch.distributed` 的轻量封装,确保程序可以在不修改代码或者少量修改代码的情况下在单个GPU或TPU下正常运行 - 使用 🤗 Transformer 的高级 Trainer API ,该API抽象封装了所有代码模板并且支持不同设备和分布式场景。 ## 什么是分布式训练,为什么它很重要? 下面是一些非常基础的 PyTorch 训练代码,它基于Pytorch 官方在 MNIST 上创建和训练模型的[示例](https://github.com/pytorch/examples/blob/main/mnist/main.py)。 ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms class BasicNet(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) self.act = F.relu def forward(self, x): x = self.act(self.conv1(x)) x = self.act(self.conv2(x)) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.act(self.fc1(x)) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output ``` 我们定义训练设备(`cuda`): ```python device = "cuda" ``` 构建一些基本的PyTorch DataLoaders: ```python transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307), (0.3081)) ]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64) test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) ``` 把模型放入CUDA设备: ```python model = BasicNet().to(device) ``` 构建PyTorch optimizer(优化器) ```python optimizer = optim.AdamW(model.parameters(), lr=1e-3) ``` 最终创建一个简单的训练和评估循环,训练循环会使用全部训练数据集进行训练,评估循环会计算训练后模型在测试数据集上的准确度: ```python model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() optimizer.zero_grad() model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() print(f'Accuracy: {100. * correct / len(test_loader.dataset)}') ``` 通常从这里开始,就可以将所有的代码放入 Python 脚本或在 Jupyter Notebook 上运行它。 然而,只执行 `python myscript.py` 只会使用单个 GPU 运行脚本。如果有多个GPU资源可用,您将如何让这个脚本在两个 GPU 或多台机器上运行,通过分布式训练提高训练速度? 这是 `torch.distributed` 发挥作用的地方 ## PyTorch分布式数据并行 顾名思义,`torch.distributed` 旨在配置分布式训练。你可以使用它配置多个节点进行训练,例如:多机器下的单个GPU,或者单台机器下的多个GPU,或者两者的任意组合。 为了将上述代码转换为分布式训练,必须首先定义一些设置配置,具体细节请参阅[DDP使用教程](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) 首先必须声明`setup`和`cleanup`函数。这将创建一个进程组,并且所有计算进程都可以通过这个进程组通信。 >"注意:在本教程的这一部分中,假定这些代码是在 python 脚本文件中启动。稍后将讨论使用 Accelerate 的启动器,就不必声明setup和 cleanup函数了" ```python import os import torch.distributed as dist def setup(rank, world_size): "Sets up the process group and configuration for PyTorch Distributed Data Parallelism" os.environ["MASTER_ADDR"] = 'localhost' os.environ["MASTER_PORT"] = "12355" # Initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) def cleanup(): "Cleans up the distributed environment" dist.destroy_process_group() ``` 最后一个疑问是,我怎样把我的数据和模型发送到另一个GPU上? 这正是` DistributedDataParallel`模块发挥作用的地方, 它将您的模型复制到每个 GPU 上 ,并且当`loss.backward()`被调用进行反向传播的时候,所有这些模型副本的梯度将被同步地平均/下降(reduce)。这确保每个设备在执行优化器步骤后具有相同的权重。 下面是我们的训练设置示例,我们使用了DistributedDataParallel重构了训练函数: >"注意:此处的rank是当前 GPU 与所有其他可用 GPU 相比的总体rank,这意味着它们的rank为`0 -> n-1` ```python from torch.nn.parallel import DistributedDataParallel as DDP def train(model, rank, world_size): setup(rank, world_size) model = model.to(rank) ddp_model = DDP(model, device_ids=[rank]) optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3) # Train for one epoch model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() optimizer.zero_grad() cleanup() ``` 在上述的代码中需要为每个副本设备上的模型(因此在这里是`ddp_model`的参数而不是`model`的参数)声明优化器,以便正确计算每个副本设备上的梯度。 最后,要运行脚本,PyTorch 有一个方便的`torchrun`命令行模块可以提供帮助。只需传入它应该使用的节点数以及要运行的脚本即可: ```bash torchrun --nproc_per_nodes=2 --nnodes=1 example_script.py ``` 上面的代码可以在在一台机器上的两个 GPU 上运行训练脚本,这是使用 PyTorch 只进行分布式训练的情况(不可以在单机单卡上运行)。 现在让我们谈谈 Accelerate,一个旨在使并行化更加无缝并有助于一些最佳实践的库 ## 🤗 Accelerate [Accelerate](https://huggingface.co/docs/accelerate)是一个库,旨在无需大幅修改代码的情况下完成并行化。除此之外,Accelerate 附带的数据pipeline还可以提高代码的性能。 首先,让我们将刚刚执行的所有上述代码封装到一个函数中,以帮助我们直观地看到差异: ```python def train_ddp(rank, world_size): setup(rank, world_size) # Build DataLoaders transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307), (0.3081)) ]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64) test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) # Build model model = model.to(rank) ddp_model = DDP(model, device_ids=[rank]) # Build optimizer optimizer = optim.AdamW(ddp_model.parameters(), lr=1e-3) # Train for a single epoch model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() optimizer.zero_grad() # Evaluate model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() print(f'Accuracy: {100. * correct / len(test_loader.dataset)}') ``` 接下来让我们谈谈 Accelerate 如何便利地实现并行化的。上面的代码有几个问题: 1. 该代码有点低效,因为每个设备都会创建一个dataloader。 2. 这些代码只能运行在多GPU下,当想让这个代码运行在单个GPU或 TPU 时,还需要额外进行一些修改。 Accelerate 通过 [`Accelerator`](https://huggingface.co/docs/accelerate/v0.12.0/en/package_reference/accelerator#accelerator)类解决上述问题。通过它,不论是单节点还是多节点,除了三行代码外,其余代码几乎保持不变,如下所示: ```python def train_ddp_accelerate(): accelerator = Accelerator() # Build DataLoaders transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307), (0.3081)) ]) train_dset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dset = datasets.MNIST('data', train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dset, shuffle=True, batch_size=64) test_loader = torch.utils.data.DataLoader(test_dset, shuffle=False, batch_size=64) # Build model model = BasicModel() # Build optimizer optimizer = optim.AdamW(model.parameters(), lr=1e-3) # Send everything through `accelerator.prepare` train_loader, test_loader, model, optimizer = accelerator.prepare( train_loader, test_loader, model, optimizer ) # Train for a single epoch model.train() for batch_idx, (data, target) in enumerate(train_loader): output = model(data) loss = F.nll_loss(output, target) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() # Evaluate model.eval() correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() print(f'Accuracy: {100. * correct / len(test_loader.dataset)}') ``` 借助Accelerator对象,您的 PyTorch 训练循环现在已配置为可以在任何分布式情况运行。使用Accelerator改造后的代码仍然可以通过`torchrun CLI` 或通过 `Accelerate` 自己的 CLI 界面启动([`启动你的🤗 Accelerate 脚本`](https://huggingface.co/docs/accelerate/v0.12.0/en/basic_tutorials/launch))。 因此,现在可以尽可能保持 PyTorch 原生代码不变的前提下,使用 Accelerate 执行分布式训练。 早些时候有人提到 `Accelerate` 还可以使 DataLoaders 更高效。这是通过自定义采样器实现的,它可以在训练期间自动将部分批次发送到不同的设备,从而允许每个设备只需要储存数据的一部分,而不是一次将数据复制四份存入内存,具体取决于配置。因此,内存总量中只有原始数据集的一个完整副本。该数据集会拆分后分配到各个训练节点上,从而允许在单个实例上训练更大的数据集,而不会使内存爆炸 ### 使用`notebook_launcher` 之前提到您可以直接从 Jupyter Notebook 运行分布式代码。这来自 Accelerate 的[`notebook_launcher`](https://huggingface.co/docs/accelerate/v0.12.0/en/basic_tutorials/notebook)模块,它可以在 Jupyter Notebook 内部的代码启动多 GPU 训练。 使用它就像导入launcher一样简单: ```python from accelerate import notebook_launcher ``` 接着传递我们之前声明的训练函数、要传递的任何参数以及要使用的进程数(例如 TPU 上的 8 个,或两个 GPU 上的 2 个)。下面两个训练函数都可以运行,但请注意,启动单次启动后,实例需要重新启动才能产生另一个 ```python notebook_launcher(train_ddp, args=(), num_processes=2) ``` 或者: ```python notebook_launcher(train_accelerate_ddp, args=(), num_processes=2) ``` ## 使用🤗 Trainer 终于我们来到了最高级的API-- -- Hugging Face [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer). 它涵盖了尽可能多的训练类型,同时仍然能够在分布式系统上进行训练,用户根本不需要做任何事情。 首先我们需要导入Trainer: ```python from transformers import Trainer ``` 然后我们定义一些`TrainingArguments`来控制所有常用的超参数。Trainer需要的训练数据是字典类型的,因此需要制作自定义整理功能。 最后,我们将训练器子类化并编写我们自己的`compute_loss`. 之后,这段代码也可以分布式运行,而无需修改任何训练代码! ```python from transformers import Trainer, TrainingArguments model = BasicNet() training_args = TrainingArguments( "basic-trainer", per_device_train_batch_size=64, per_device_eval_batch_size=64, num_train_epochs=1, evaluation_strategy="epoch", remove_unused_columns=False ) def collate_fn(examples): pixel_values = torch.stack([example[0] for example in examples]) labels = torch.tensor([example[1] for example in examples]) return {"x":pixel_values, "labels":labels} class MyTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): outputs = model(inputs["x"]) target = inputs["labels"] loss = F.nll_loss(outputs, target) return (loss, outputs) if return_outputs else loss trainer = MyTrainer( model, training_args, train_dataset=train_dset, eval_dataset=test_dset, data_collator=collate_fn, ) ``` ```python trainer.train() ``` ```bash ***** Running training ***** Num examples = 60000 Num Epochs = 1 Instantaneous batch size per device = 64 Total train batch size (w. parallel, distributed & accumulation) = 64 Gradient Accumulation steps = 1 Total optimization steps = 938 ``` |Epoch | 训练损失| 验证损失 |--|--|--| |1|0.875700|0.282633| 与上面的 `notebook_launcher` 示例类似,也可以将这个过程封装成一个训练函数: ```python def train_trainer_ddp(): model = BasicNet() training_args = TrainingArguments( "basic-trainer", per_device_train_batch_size=64, per_device_eval_batch_size=64, num_train_epochs=1, evaluation_strategy="epoch", remove_unused_columns=False ) def collate_fn(examples): pixel_values = torch.stack([example[0] for example in examples]) labels = torch.tensor([example[1] for example in examples]) return {"x":pixel_values, "labels":labels} class MyTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): outputs = model(inputs["x"]) target = inputs["labels"] loss = F.nll_loss(outputs, target) return (loss, outputs) if return_outputs else loss trainer = MyTrainer( model, training_args, train_dataset=train_dset, eval_dataset=test_dset, data_collator=collate_fn, ) trainer.train() notebook_launcher(train_trainer_ddp, args=(), num_processes=2) ``` ## 相关资源 要了解有关 PyTorch 分布式数据并行性的更多信息,请查看[此处的文档](https://pytorch.org/docs/stable/distributed.html) 要了解有关 🤗 Accelerate 的更多信息,请查看[此处的文档](https://huggingface.co/docs/accelerate) 要了解有关 🤗 Transformer 的更多信息,请查看[此处的文档](https://huggingface.co/docs/transformers)
>英文原文:[From PyTorch DDP to Accelerate to Trainer, mastery of distributed training with ease](https://huggingface.co/blog/pytorch-ddp-accelerate-transformers#%F0%9F%A4%97-accelerate) >译者:innovation64 (李洋)