OK-VQA / OK-VQA.py
SaulLu's picture
working loading script
d37d90c
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OK-VQA loading script."""
import csv
import json
import os
from pathlib import Path
import datasets
_CITATION = """\
@article{DBLP:journals/corr/abs-1906-00067,
author = {Kenneth Marino and
Mohammad Rastegari and
Ali Farhadi and
Roozbeh Mottaghi},
title = {{OK-VQA:} {A} Visual Question Answering Benchmark Requiring External
Knowledge},
journal = {CoRR},
volume = {abs/1906.00067},
year = {2019},
url = {http://arxiv.org/abs/1906.00067},
eprinttype = {arXiv},
eprint = {1906.00067},
timestamp = {Thu, 13 Jun 2019 13:36:00 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1906-00067.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
OK-VQA is a new dataset for visual question answering that requires methods which can draw upon outside knowledge to answer questions.
- 14,055 open-ended questions
- 5 ground truth answers per question
- Manually filtered to ensure all questions require outside knowledge (e.g. from Wikipeida)
- Reduced questions with most common answers to reduce dataset bias
"""
_HOMEPAGE = "https://okvqa.allenai.org/"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY 4.0" # found in the zip files bellow - we show maybe ask for confirmation
_URLS = {
"annotations": {
"train": "https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip",
"val": "https://okvqa.allenai.org/static/data/mscoco_val2014_annotations.json.zip",
},
"questions": {
"train": "https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip",
"val": "https://okvqa.allenai.org/static/data/OpenEnded_mscoco_val2014_questions.json.zip",
},
"images": {
"train": "http://images.cocodataset.org/zips/train2014.zip",
"val": "http://images.cocodataset.org/zips/val2014.zip",
},
}
class OKVQADataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
"question_type": datasets.Value('string'),
"confidence": datasets.Value('int32'),
"answers": [{
"answer": datasets.Value('string'),
"raw_answer": datasets.Value('string'),
"answer_confidence": datasets.Value('string'),
"answer_id": datasets.Value('int64'),
}],
"image_id": datasets.Value('int64'),
"answer_type": datasets.Value('string'),
"question_id": datasets.Value('int64'),
"question": datasets.Value('string'),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# urls = _URLS[self.config.name] # TODO later
data_dir = dl_manager.download_and_extract(_URLS)
gen_kwargs = {}
for split_name in ["train", "val"]:
gen_kwargs_per_split = {}
for dir_name in _URLS.keys():
if split_name in data_dir[dir_name]:
file_name = Path(_URLS[dir_name][split_name]).name[: -len(".zip")]
path = Path(data_dir[dir_name][split_name]) / file_name
gen_kwargs_per_split[f"{dir_name}_path"] = path
else:
gen_kwargs_per_split[f"{dir_name}_path"] = None
gen_kwargs[split_name] = gen_kwargs_per_split
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs=gen_kwargs["train"],
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs=gen_kwargs["val"],
),
]
def _generate_examples(self, questions_path, annotations_path, images_path):
dataset = json.load(open(annotations_path, "r"))
questions = json.load(open(questions_path, "r"))
qa = {ann["question_id"]: [] for ann in dataset["annotations"]}
for ann in dataset["annotations"]:
qa[ann["question_id"]] = ann
for question in questions["questions"]:
annotation = qa[question["question_id"]]
# some checks
assert len(set(question.keys()) ^ {"image_id", "question", "question_id"}) == 0
assert (
len(
set(annotation.keys())
^ {
"question_type",
"confidence",
"answers",
"image_id",
"answer_type",
"question_id",
}
)
== 0
)
# build record
record = question
record.update(annotation)
record["image"] = str(images_path / f"COCO_{images_path.name}_{record['image_id']:0>12}.jpg")
yield question["question_id"], record