Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
1K - 10K
Tags:
text-to-sql
License:
import pandas as pd | |
from datasets import Dataset | |
# Step 1: Read the Parquet files | |
train_df = pd.read_parquet('train-00000-of-00001.parquet') | |
validation_df = pd.read_parquet('validation-00000-of-00001.parquet') | |
# Step 2: Add the new row to the training DataFrame | |
new_example = { | |
'db_id': 'hr_1', # Replace with the actual database ID | |
'query': "SELECT COUNT(*) FROM employees WHERE department = 'Sales' AND salary > 50000;", | |
'question': 'How many employees in the Sales department have a salary greater than $50,000?', | |
'query_toks': ['SELECT', 'COUNT', '(', '*', ')', 'FROM', 'employees', 'WHERE', 'department', '=', "'Sales'", 'AND', 'salary', '>', '50000', ';'], | |
'query_toks_no_value': ['SELECT', 'COUNT', '(', '*', ')', 'FROM', 'employees', 'WHERE', 'department', '=', 'VALUE', 'AND', 'salary', '>', 'VALUE', ';'], | |
'question_toks': ['How', 'many', 'employees', 'in', 'the', 'Sales', 'department', 'have', 'a', 'salary', 'greater', 'than', '$50,000', '?'], | |
'sql': { | |
'select': [(0, [(3, (0, '*'))])], # (agg_id, val_unit), agg_id for COUNT is 0, val_unit is (column_id, column_name) | |
'from': {'table_units': [('table_unit', 0)], 'conds': []}, # ('table_unit', table_id), assuming 'employees' is the first table | |
'where': [(0, False, [(2, (0, 'department')), '=', (1, "'Sales'")]), 'AND', (0, False, [(2, (0, 'salary')), '>', (1, '50000')])], | |
'groupBy': [], | |
'having': [], | |
'orderBy': [], | |
'limit': None, | |
'intersect': None, | |
'union': None, | |
'except': None | |
} | |
} | |
train_df = train_df.append(new_example, ignore_index=True) | |
# Step 3: Write the modified DataFrame back to Parquet | |
train_df.to_parquet('train-00000-of-00001.parquet') | |