Datasets:
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Demo for pretrain""" | |
import os | |
import json | |
import datasets | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
""" | |
_LICENSE = "apache-license-2.0" | |
_HOMEPAGE = "https://github.com/IDEA-CCNL/Fengshenbang-LM" | |
class Config(datasets.BuilderConfig): | |
"""BuilderConfig for Demo""" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
""" | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
class PretrainCorpusDemo(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIG_CLASS = Config | |
BUILDER_CONFIGS = [ | |
Config(description=_DESCRIPTION) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features({ | |
"text": datasets.Value("string"), | |
}), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
license=_LICENSE | |
) | |
def _split_generators(self, dl_manager): | |
files = { | |
"test": os.path.join("data", f"train.json"), | |
"validation": os.path.join("data", f"train.json"), | |
"train": os.path.join("data", f"train.json"), | |
} | |
data_dir = dl_manager.download_and_extract(files) | |
output = [] | |
test = datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir["test"] | |
} | |
) | |
output.append(test) | |
# if os.path.exists(data_dir["validation"]): | |
valid = datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": data_dir["validation"] | |
} | |
) | |
output.append(valid) | |
train = datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_dir["train"] | |
} | |
) | |
output.append(train) | |
return output | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
lines = f.readlines() | |
for id_, line in enumerate(lines): | |
data = json.loads(line) | |
s = { | |
'text': data['text'], | |
} | |
yield id_, s | |