from datasets import DatasetBuilder, SplitGenerator, Split, Features, Value, Sequence, BuilderConfig, GeneratorBasedBuilder import datasets from datasets.utils.download_manager import DownloadManager from typing import List, Any, Tuple import json import os # Mapping for song_type and group_type song_type_mapping = { 1: "presentación", 2: "pasodoble/tango", 3: "cuplé", 4: "estribillo", 5: "popurrí", 6: "cuarteta", } group_type_mapping = { 1: "coro", 2: "comparsa", 3: "chirigota", 4: "cuarteto", } class CadizCarnivalConfig(BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.2"), **kwargs) class CadizCarnivalDataset(GeneratorBasedBuilder): VERSION = "1.0.0" BUILDER_CONFIGS = [ CadizCarnivalConfig(name="accurate", description="This part of my dataset covers accurate data"), CadizCarnivalConfig(name="midaccurate", description="This part of my dataset covers midaccurate data"), ] def _info(self): return datasets.DatasetInfo( description="_DESCRIPTION", features=datasets.Features({ "id": Value("string"), "authors": Sequence(Value("string")), "song_type": Value("string"), "year": Value("string"), "group": Value("string"), "group_type": Value("string"), "lyrics": Sequence(Value("string")), }), supervised_keys=None, homepage="https://letrascarnavalcadiz.com/", citation="_CITATION", ) def _split_generators(self, dl_manager: DownloadManager) -> List[SplitGenerator]: urls_to_download = { "accurate": "https://huggingface.co/datasets/IES-Rafael-Alberti/letras-carnaval-cadiz/raw/main/data/accurate-00000-of-00001.json", "midaccurate": "https://huggingface.co/datasets/IES-Rafael-Alberti/letras-carnaval-cadiz/raw/main/data/midaccurate-00000-of-00001.json" } downloaded_files = dl_manager.download_and_extract(urls_to_download) if self.config.name == "accurate": return [SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["accurate"]})] elif self.config.name == "midaccurate": return [SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["midaccurate"]})] def _generate_examples(self, filepath: str): with open(filepath, encoding="utf-8") as f: data = json.load(f) for item in data: item["song_type"] = song_type_mapping.get(item["song_type"], "indefinido") item["group_type"] = group_type_mapping.get(item["group_type"], "indefinido") yield item["id"], item