File size: 4,592 Bytes
8b6caa7 6c72744 8b6caa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
license: apache-2.0
dataset_info:
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: entry_point
dtype: string
- name: test
dtype: string
- name: description
dtype: string
- name: language
dtype: string
- name: canonical_solution
sequence: string
splits:
- name: train
num_bytes: 505355
num_examples: 161
download_size: 174830
dataset_size: 505355
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Benchmark summary
We introduce HumanEval for Kotlin, created from scratch by human experts.
Solutions and tests for all 161 HumanEval tasks are written by an expert olympiad programmer with 6 years of experience in Kotlin, and independently checked by a programmer with 4 years of experience in Kotlin.
The tests we implement are equivalent to the original HumanEval tests for Python.
# How to use
The benchmark is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline.
When testing models on this benchmark, during the code generation step we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation — specifically, we remove all comments and signatures.
The code for running an example model on the benchmark using the early stopping and post-processing is available below.
```python
import json
import re
from datasets import load_dataset
import jsonlines
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
)
from tqdm import tqdm
from mxeval.evaluation import evaluate_functional_correctness
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops, tokenizer):
(StoppingCriteria.__init__(self),)
self.stops = rf"{stops}"
self.tokenizer = tokenizer
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
last_three_tokens = [int(x) for x in input_ids.data[0][-3:]]
decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens)
return bool(re.search(self.stops, decoded_last_three_tokens))
def generate(problem):
criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer)
stopping_criteria = StoppingCriteriaList([criterion])
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
sample = model.generate(
problem,
max_new_tokens=256,
min_new_tokens=128,
pad_token_id=tokenizer.eos_token_id,
do_sample=False,
num_beams=1,
stopping_criteria=stopping_criteria,
)
answer = tokenizer.decode(sample[0], skip_special_tokens=True)
return answer
def clean_asnwer(code):
# Clean comments
code_without_line_comments = re.sub(r"//.*", "", code)
code_without_all_comments = re.sub(
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
)
#Clean signatures
lines = code.split("\n")
for i, line in enumerate(lines):
if line.startswith("fun "):
return "\n".join(lines[i + 1:])
return code
model_name = "JetBrains/CodeLlama-7B-Kexer"
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
problem_dict = {problem['task_id']: problem for problem in dataset}
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda')
tokenizer = AutoTokenizer.from_pretrained(model_name)
output = []
for key in tqdm(list(problem_dict.keys()), leave=False):
problem = problem_dict[key]["prompt"]
answer = generate(problem)
answer = clean_asnwer(answer)
output.append({"task_id": key, "completion": answer, "language": "kotlin"})
output_file = f"answers"
with jsonlines.open(output_file, mode="w") as writer:
for line in output:
writer.write(line)
evaluate_functional_correctness(
sample_file=output_file,
k=[1],
n_workers=16,
timeout=15,
problem_file=problem_dict,
)
with open(output_file + '_results.jsonl') as fp:
total = 0
correct = 0
for line in fp:
sample_res = json.loads(line)
print(sample_res)
total += 1
correct += sample_res['passed']
print(f'Pass rate: {correct/total}')
```
# Results
We evaluated multiple coding models using this benchmark, and the results are presented in the figure below:
![results](https://huggingface.co/datasets/JetBrains/Kotlin_HumanEval/resolve/main/model_scores.png)
|