---
task_categories:
- question-answering
- translation
- summarization
- text-generation
- text2text-generation
- conversational
tags:
- agent
- multi-agent
- autogpt
- autogen
- agentgpt
- gptq
- wizard
- code-generation
- retrieval-augmented-generation
- humaneval
---
# [Roy: Rapid Prototyping of Agents with Hotswappable Components](https://github.com/JosefAlbers/Roy)
[](https://colab.research.google.com/github/JosefAlbers/Roy/blob/main/quickstart.ipynb)
[![DOI](https://zenodo.org/badge/699801819.svg)](https://zenodo.org/badge/latestdoi/699801819)
Roy is a lightweight alternative to `autogen` for developing advanced multi-agent systems using language models. It aims to simplify and democratize the development of emergent collective intelligence.
## Features
- **Model Agnostic**: Use any LLM, no external APIs required. Defaults to a 4-bit quantized wizard-coder-python model for efficiency.
- **Modular and Composable**: Roy decomposes agent interactions into reusable building blocks - templating, retrieving, generating, executing.
- **Transparent and Customizable**: Every method has a clear purpose. Easily swap out components or add new capabilities.
## Quickstart
```sh
git clone https://github.com/JosefAlbers/Roy
cd Roy
pip install -r requirements.txt
pip install -U transformers optimum accelerate auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
```
```python
from roy import Roy, Roys
roy = Roy()
s = '"What date is today? Which big tech stock has the largest year-to-date gain this year? How much is the gain?'
roy.generate(roy.format(s))
```
### **Rapid Benchmarking**
Roy provides a simple way to evaluate and iterate on your model architecture.. This allows you to:
- Easily swap out components, such as language models, prompt formats, agent architectures, etc
- Benchmark on different tasks like arithmetic, python coding, etc (default is OpenAI's HumanEval)
- Identify agent's areas of strengths and weaknesses
```python
from Roy.util import piecewise_human_eval
# Comparing different language models
piecewise_human_eval(0, lm_id='TheBloke/WizardCoder-Python-7B-V1.0-GPTQ')
# -> {'pass@1': 0.6341463414634146}
piecewise_human_eval(0, lm_id='TheBloke/tora-code-7B-v1.0-GPTQ')
# -> {'pass@1': 0.5609756097560976}
piecewise_human_eval(0, lm_id='TheBloke/Arithmo-Mistral-7B-GPTQ')
# -> {'pass@1': 0.5121951219512195}
# Testing a custom agent architecture
piecewise_human_eval(0, fx=)
```
*Takes around 30 minutes each on a free Google Colab runtime.*
### **Constrained Beam Search**
Use templates to structure conversations (control output length, format, etc)
```python
roy.generate(s, ('\n```python', '\n```')) # Generate a python code block
roy.generate(s, (('\n```python', '\n```javascript'), '\n```')) # Generate python or javascript codes
roy.generate(s, ('\n```python', 100, '\n```')) # Generate a code block of size less than 100 tokens
```
### **Retrieval Augmented Generation**
Enhance generation with relevant knowledge.
```python
s = 'Create a text to image generator.'
r = roy.retrieve(s, n_topk=3, src='huggingface')
[roy.generate(s) for s in r]
```
### **Auto-Feedback**
Agents recursively improve via critiquing each other.
```python
s = "Create a secure and unique secret code word with a Python script that involves multiple steps to ensure the highest level of confidentiality and protection.\n"
for i in range(2):
c = roy.generate(s, prohibitions=['input'])
s += roy.execute(c)
```
### **Auto-Grinding**
Agents collaborate in tight loops to iteratively refine outputs to specification.
```python
user_request = "Compare the year-to-date gain for META and TESLA."
ai_response = roy.generate(user_request, ('\n```python', ' yfinance', '\n```'))
for i in range(2):
shell_execution = roy.execute(ai_response)
if 'ModuleNotFoundError' in shell_execution:
roy.execute(roy.generate(roy.format(f'Write a shell command to address the error encountered while running this Python code:\n\n{shell_execution}')))
elif 'Error' in shell_execution:
ai_response = roy.generate(roy.format(f'Modify the code to address the error encountered:\n\n{shell_execution}'))
else:
break
```
### **Multi-Agent**
Flexible primitives to build ecosystems of agents.
```python
roys = Roys()
# AutoFeedback
roys.create(agents = {'Coder': 'i = execute(generate(i))'})
roys.start(requests = {'i': 'Create a mobile application that can track the health of elderly people living alone in rural areas.'})
# Retrieval Augmented Generation
roys.create(
agents = {
'Retriever': 'r = retrieve(i)',
'Generator': 'o = generate(r)',
})
roys.start(requests = {'i': 'Create a Deutsch to English translator.'})
# Providing a custom tool to one of the agents using lambda
roys.create(
agents = {
'Coder': 'c = generate(i)',
'Proxy': 'c = custom(execute(c))',
},
tools = {'custom': lambda x:f'Modify the code to address the error encountered:\n\n{x}' if 'Error' in x else None})
roys.start(requests = {'i': 'Compare the year-to-date gain for META and TESLA.'})
# Another way to create a custom tool for agents
def custom_switch(self, c):
py_str = 'Modify the code to address the error encountered:\n\n'
sh_str = 'Write a shell command to address the error encountered while running this Python code:\n\n'
x = self.execute(c)
if 'ModuleNotFoundError' in x:
self.execute(self.generate(sh_str+x))
elif 'Error' in x:
self.dict_cache['i'] = [py_str+x]
else:
return '<<>>:\n\n'+x
roys.create(
agents = {
'Coder': 'c = generate(i)',
'Proxy': '_ = protocol(c)',
},
tools = {'protocol': custom_switch})
roys.start(requests = {'i': 'Compare the year-to-date gain for META and TESLA.'})
```
## Emergent Multi-Agent Dynamics
Roy aims to facilitate the emergence of complex, adaptive multi-agent systems. It draws inspiration from biological and AI concepts to enable decentralized coordination and continual learning.
- **Survival of the Fittest** - Periodically evaluate and selectively retain high-performing agents based on accuracy, speed etc. Agents adapt through peer interactions.
- **Mixture of Experts** - Designate agent expertise, dynamically assemble specialist teams, and route tasks to optimal experts. Continuously refine and augment experts.
These mechanisms facilitate the emergence of capable, adaptive, and efficient agent collectives.
## Get Involved
Roy is under active development. We welcome contributions - feel free to open issues and PRs!
## Support the Project
If you found this project helpful or interesting and want to support more of these experiments, feel free to buy me a coffee!