--- tags: - audio - automatic-speech-recognition - en-atc - en dataset_info: features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: segment_start_time dtype: float32 - name: segment_end_time dtype: float32 - name: duration dtype: float32 splits: - name: test num_bytes: 113872168.0 num_examples: 871 download_size: 113467762 dataset_size: 113872168.0 --- # Dataset Card for ATCO2 test set corpus (1hr set) ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages and Other Details](#languages-and-other-details) - [Dataset Structure](#dataset-structure) - [Data Fields](#data-fields) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** [ATCO2 project homepage](https://www.atco2.org/) - **Repository:** [ATCO2 corpus](https://github.com/idiap/atco2-corpus) - **Paper:** [ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications](https://arxiv.org/abs/2211.04054) ### Dataset Summary ATCO2 project aims at developing a unique platform allowing to collect, organize and pre-process air-traffic control (voice communication) data from air space. This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 864702. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union. The project collected the real-time voice communication between air-traffic controllers and pilots available either directly through publicly accessible radio frequency channels or indirectly from air-navigation service providers (ANSPs). In addition to the voice communication data, contextual information is available in a form of metadata (i.e. surveillance data). The dataset consists of two distinct packages: - A corpus of 5000+ hours (pseudo-transcribed) of air-traffic control speech collected across different airports (Sion, Bern, Zurich, etc.) in .wav format for speech recognition. Speaker distribution is 90/10% between males and females and the group contains native and non-native speakers of English. - A corpus of 4 hours (transcribed) of air-traffic control speech collected across different airports (Sion, Bern, Zurich, etc.) in .wav format for speech recognition. Speaker distribution is 90/10% between males and females and the group contains native and non-native speakers of English. This corpus has been transcribed with orthographic information in XML format with speaker noise information, SNR values and others. Read Less - A free sample of the 4 hours transcribed data is in [ATCO2 project homepage](https://www.atco2.org/data) ### Supported Tasks and Leaderboards - `automatic-speech-recognition`. Already adapted/fine-tuned models are available here --> [Wav2Vec 2.0 LARGE mdel](https://huggingface.co/Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc-and-atcosim). ### Languages and other details The text and the recordings are in English. For more information see Table 3 and Table 4 of [ATCO2 corpus paper](https://arxiv.org/abs/2211.04054) ## Dataset Structure ### Data Fields - `id (string)`: a string of recording identifier for each example, corresponding to its. - `audio (audio)`: audio data for the given ID - `text (string)`: transcript of the file already normalized. Follow these repositories for more details [w2v2-air-traffic](https://github.com/idiap/w2v2-air-traffic) and [bert-text-diarization-atc](https://github.com/idiap/bert-text-diarization-atc) - `segment_start_time (float32)`: segment start time (normally 0) - `segment_end_time (float32): segment end time - `duration (float32)`: duration of the recording, compute as segment_end_time - segment_start_time ## Additional Information ### Licensing Information The licensing status of the ATCO2-test-set-1h corpus is in the file **ATCO2-ASRdataset-v1_beta - End-User Data Agreement** in the data folder. Download the data in [ATCO2 project homepage](https://www.atco2.org/data) ### Citation Information Contributors who prepared, processed, normalized and uploaded the dataset in HuggingFace: ``` @article{zuluaga2022how, title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } @article{zuluaga2022bertraffic, title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } @article{zuluaga2022atco2, title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others}, journal={arXiv preprint arXiv:2211.04054}, year={2022} } ```