File size: 4,771 Bytes
e3657eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import requests
from datetime import datetime, timedelta
import pandas as pd


class WeatherDataFetcher:
    def __init__(self, api_key):
        self.api_key = api_key
    
    def get_lat_lon(self, city_name):
        """
        Fetches the latitude and longitude for a given city name.

        Parameters:
        - city_name: The name of the city (including state and country).

        Returns:
        - A tuple (latitude, longitude) if successful, None otherwise.
        """
        url = f'http://api.openweathermap.org/geo/1.0/direct?q={city_name}&limit=1&appid={self.api_key}'
        try:
            response = requests.get(url)
            data = response.json()
            if data:
                return data[0]['lat'], data[0]['lon']
            else:
                print('No geo data found')
                return None
        except Exception as e:
            print(f"Error fetching geo data: {e}")
            return None
        
    def fetch_weather_data(self, lat, lon, start_date, end_date):
        """
        Fetches weather data for a given set of coordinates within a specified date range
        and adds latitude and longitude to the DataFrame.

        Parameters:
        - lat: Latitude of the location.
        - lon: Longitude of the location.
        - start_date: The start date as a datetime object.
        - end_date: The end date as a datetime object.

        Returns:
        - A pandas DataFrame containing the weather data along with latitude and longitude.
        """
        daily_data_frames = []
        current_date = start_date
        
        while current_date <= end_date:
            timestamp = int(datetime.timestamp(current_date))
            url = f'https://history.openweathermap.org/data/2.5/history/city?lat={lat}&lon={lon}&type=hour&start={timestamp}&appid={self.api_key}'
            
            response = requests.get(url)
            if response.status_code == 200:
                data = response.json()
                if 'list' in data:
                    df_day = pd.json_normalize(data['list'])
                    # Add latitude and longitude as columns
                    df_day['latitude'] = lat
                    df_day['longitude'] = lon
                    df_day['date'] = current_date.strftime('%Y-%m-%d')
                    daily_data_frames.append(df_day)
                else:
                    print(f"No 'list' key found in data for {current_date.strftime('%Y-%m-%d')}")
            else:
                print(f"Failed to retrieve data for {current_date.strftime('%Y-%m-%d')} with status code {response.status_code}")
            
            current_date += timedelta(days=1)

        if daily_data_frames:
            df_all_days = pd.concat(daily_data_frames, ignore_index=True)
            return self.expand_weather_column(df_all_days)
        else:
            return pd.DataFrame()
        
    def expand_weather_column(self,df):
    # Check if 'weather' column exists
        if 'weather' in df.columns:
        # Extract weather details
            df['weather_id'] = df['weather'].apply(lambda x: x[0]['id'] if x else None)
            df['weather_main'] = df['weather'].apply(lambda x: x[0]['main'] if x else None)
            df['weather_description'] = df['weather'].apply(lambda x: x[0]['description'] if x else None)
            df['weather_icon'] = df['weather'].apply(lambda x: x[0]['icon'] if x else None)
        
        # Drop the original 'weather' column
            df = df.drop('weather', axis=1)
        return df
    
    def fetch_weather_for_cities(self, cities, start_date, end_date):
        all_cities_weather_data = []

        for city_name in cities:
            lat_lon = self.get_lat_lon(city_name)  # Call the method within the same class
            if lat_lon:
                lat, lon = lat_lon
                df_weather = self.fetch_weather_data(lat, lon, start_date, end_date)  
                if not df_weather.empty:
                    df_weather['city'] = city_name  # Add a column for the city name
                    all_cities_weather_data.append(df_weather)
                else:
                    print(f"No weather data retrieved for {city_name}.")
            else:
                print(f"Failed to get latitude and longitude for {city_name}.")

        if all_cities_weather_data:
            all_data_df = pd.concat(all_cities_weather_data, ignore_index=True)
            return all_data_df
        else:
            return pd.DataFrame()
        
    def save_to_csv(self, df, file_name):
        try:
            df.to_csv(file_name, index=False) 
            print(f"Data successfully saved to {file_name}.")
        except Exception as e:
            print(f"Failed to save data to CSV. Error: {e}")