Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 10,503 Bytes
d1cdea5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Add description
"""TexPrax: Data collected during the project https://texprax.de/ """


import csv
import os
import ast 
#import json

import datasets

# TODO: Add citation
_CITATION = """\
@inproceedings{stangier-etal-2022-texprax,
    title = "{T}ex{P}rax: A Messaging Application for Ethical, Real-time Data Collection and Annotation",
    author = {Stangier, Lorenz  and
      Lee, Ji-Ung  and
      Wang, Yuxi  and
      M{\"u}ller, Marvin  and
      Frick, Nicholas  and
      Metternich, Joachim  and
      Gurevych, Iryna},
    booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: System Demonstrations",
    month = nov,
    year = "2022",
    address = "Taipei, Taiwan",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.aacl-demo.2",
    pages = "9--16",
}
"""

# TODO: Add description
_DESCRIPTION = """\
This dataset was collected in the [TexPrax](https://texprax.de/) project and contains named entities annotated by three researchers as well as annotated sentences (problem/P, cause/C, solution/S, and other/O).

"""

# TODO: Add link
_HOMEPAGE = "https://texprax.de/"

# TODO: Add license
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0"


# TODO: Add tudatalib urls here!
_SENTENCE_URL = "https://tudatalib.ulb.tu-darmstadt.de/bitstream/handle/tudatalib/3534/texprax-sentences.zip?sequence=8&isAllowed=y"
_ENTITY_URL = "https://tudatalib.ulb.tu-darmstadt.de/bitstream/handle/tudatalib/3534/texprax-ner.zip?sequence=9&isAllowed=y"

class TexPraxConfig(datasets.BuilderConfig):
    """BuilderConfig for TexPrax."""
    def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
        super(TexPraxConfig, self).__init__(**kwargs)


class TexPraxDataset(datasets.GeneratorBasedBuilder):
    """German dialgues that ocurred between workers in a factory. This dataset contains token level entity annotation as well as sentence level problem, cause, solution annotations."""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
       datasets.BuilderConfig(name="sentence_cl", version=VERSION, description="Sentence level annotations of the TexPrax dataset."),
       datasets.BuilderConfig(name="ner", version=VERSION, description="BIO-tagged named entites of the TexPrax dataset."),
    ]

    DEFAULT_CONFIG_NAME = "sentence_cl"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        if self.config.name == "sentence_cl":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    # Note: ID consists of <dialog-id_sentence-id_turn-id>
                    "id": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(
                            names=[
                                "P",
                                "C",
                                "S",
                                "O",
                            ]),
                    "subsplit": datasets.Value("string"),
                    # These are the features of your dataset like images, labels ...
                }
            )
        else:  # This is an example to show how to have different features for "first_domain" and "second_domain"
            features = datasets.Features(
                {
                    # Note: ID consists of <dialog-id_turn-id>
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "entities": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-LOC",
                                "I-LOC",
                                "B-ED",
                                "B-ACT",
                                "I-ACT",
                                "B-PRE",
                                "I-PRE",
                                "B-AKT",
                                "I-AKT",
                                "B-PER",
                                "I-PER",
                                "B-A",
                                "B-G",
                                "B-I",
                                "I-I",
                                "B-OT",
                                "I-OT",
                                "B-M",
                                "I-M",                                
                                "B-P",
                                "I-P",
                                "B-PR",
                                "I-PR",
                                "B-PE",
                                "I-PE",
                                "O",
                            ]
                        )
                    ),
                    "subsplit": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        if self.config.name == "sentence_cl":
            urls = _SENTENCE_URL
            data_dir = dl_manager.download_and_extract(urls)
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "sents_train.csv"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "sents_test.csv"),
                        "split": "test"
                    },
                ),
            ]
        else:
            urls = _ENTITY_URL
            data_dir = dl_manager.download_and_extract(urls)
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "entities_train.csv"),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": os.path.join(data_dir, "entities_test.csv"),
                        "split": "test"
                    },
                )
            ]
            

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as f:
            creader = csv.reader(f, delimiter=';', quotechar='"')
            next(creader) # skip header
            for key, row in enumerate(creader):
                if self.config.name == "sentence_cl":
                    dialog_id, turn_id, sentence_id, sentence, label, domain, batch = row
                    idx = f"{dialog_id}_{turn_id}_{sentence_id}"
                    yield key, {
                        "id": idx,
                        "sentence": sentence,
                        "label": label,
                        "subsplit": batch,
                        #"domain": domain,
                    }
                else:
                    idx, sentence, labels, split = row
                    # Yields examples as (key, example) tuples
                    yield key, {
                        "id": idx,
                        "tokens": [t.strip() for t in ast.literal_eval(sentence)],
                        "entities": [l.strip() for l in ast.literal_eval(labels)],
                        "subsplit": split,
                    }