|
--- |
|
license: mit |
|
task_categories: |
|
- question-answering |
|
- sentence-similarity |
|
language: |
|
- en |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
# Dataset Card for "NLQuAD" |
|
|
|
## Table of Contents |
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Additional Information](#additional-information) |
|
- [Licensing Information](#licensing-information) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [https://towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb](https://towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb) |
|
|
|
|
|
### Dataset Summary |
|
|
|
This is a simplified version of [vblagoje's](https://huggingface.co/vblagoje) [lfqa_support_docs](https://huggingface.co/datasets/vblagoje/lfqa_support_docs) and [lfqa](https://huggingface.co/datasets/vblagoje/lfqa) datasets. |
|
It was generated by me to have a more straight forward way to train Seq2Seq models on context based long form question answering tasks. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
An example of 'train' looks as follows. |
|
|
|
```json |
|
{ |
|
"question": "Khashoggi murder: Body 'dissolved in acid'", |
|
"answer": "2 November 2018", |
|
"context": [ |
|
|
|
] |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
The data fields are the same among all splits. |
|
|
|
- `question`: a `string` feature. |
|
- `answer`: a `string` feature. |
|
- `context`: a list feature containing `string` features. |
|
|
|
### Data Splits |
|
|
|
| name |train|test|validation| |
|
|----------|----:|----:|---------:| |
|
| |10259| 1280| 1280| |
|
|
|
|
|
## Additional Information |
|
|
|
### Licensing Information |
|
|
|
This dataset is distributed under the MIT licence. |