--- language: - en - fr license: apache-2.0 dataset_info: features: - name: english dtype: string - name: french dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 98656189 num_examples: 300000 - name: validation num_bytes: 646426 num_examples: 2000 - name: test num_bytes: 552411 num_examples: 1608 - name: mono num_bytes: 493712865 num_examples: 1499436 download_size: 369969388 dataset_size: 593567891 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - split: mono path: data/mono-* --- ## Dataset Downloader This script allows you to download and save datasets from the Hugging Face Hub in the same format used for the experiments: `python download_data.py --repo_name LT3/nfr_bt_nmt_english-french --base_path data/en-fr` ``` import argparse from datasets import load_dataset import os def save_data(data, file_path): with open(file_path, "w", encoding="utf-8") as f: f.write("\n".join(data) + "\n") def download_and_save_dataset(repo_name, base_path): # Load the dataset from Hugging Face Hub dataset = load_dataset(repo_name) # Ensure the necessary directory exists os.makedirs(base_path, exist_ok=True) # Dictionary to store dataset paths dataset_paths = {} # Save the datasets to disk for split in dataset.keys(): # Handle mono splits specially if "mono_english" in split or "mono_ukrainian" in split or "mono_french" in split: lang_code = "en" if "english" in split else ("uk" if "ukrainian" in split else "fr") feature = "english" if "english" in split else ("ukrainian" if "ukrainian" in split else "french") if feature in dataset[split].column_names: path = f"{base_path}/{lang_code}_mono.txt" save_data(dataset[split][feature], path) dataset_paths[f"{lang_code}_mono"] = path else: # Save data for other splits for feature in ["english", "french", "ukrainian"]: if feature in dataset[split].column_names: lang_code = "en" if feature == "english" else ("fr" if feature == "french" else "uk") path = f"{base_path}/{lang_code}_{split}.txt" save_data(dataset[split][feature], path) dataset_paths[f"{lang_code}_{split}"] = path print(dataset_paths) def main(): parser = argparse.ArgumentParser( description="Download and save datasets from Hugging Face." ) parser.add_argument( "--repo_name", required=True, help="Repository name on Hugging Face (e.g., 'MT-LT3/nfr_bt_nmt_english-french')", ) parser.add_argument( "--base_path", required=True, help="Base path where the dataset files will be saved (e.g., '/path/to/data/en-fr')", ) args = parser.parse_args() download_and_save_dataset(args.repo_name, args.base_path) if __name__ == "__main__": main() ```