Datasets:

Modalities:
Audio
Text
Formats:
parquet
Libraries:
Datasets
Dask
License:
File size: 9,113 Bytes
f80e65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eadda5e
f80e65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eadda5e
 
f80e65e
 
 
 
 
 
eadda5e
 
 
 
 
f80e65e
 
eadda5e
f80e65e
 
 
 
 
b9d9922
f80e65e
 
 
 
 
 
 
 
 
 
 
 
 
ad6f126
f80e65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eadda5e
f80e65e
 
 
eadda5e
f80e65e
 
 
 
 
 
eadda5e
f80e65e
 
2c516be
f80e65e
 
 
eadda5e
f80e65e
 
 
 
 
 
 
 
 
 
 
 
 
 
eadda5e
 
f80e65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df3d35
f80e65e
 
 
 
 
 
 
8df3d35
f80e65e
 
 
 
 
 
 
8df3d35
f80e65e
 
 
 
 
 
 
 
 
 
 
 
4c4a50d
f80e65e
 
 
 
 
 
eadda5e
 
 
f80e65e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Pangloss datasets for Yongning Na (yong1288) and Japhug (japh1234)"""

import csv
import json
import os
import datasets
from datasets.tasks import AutomaticSpeechRecognition

_CITATION = {
    "yong1288": """
@misc{michaud_alexis_2021_5336698,
author       = {Michaud, Alexis and
                Galliot, Benjamin and
                Guillaume, Séverine},
title        = {{Yongning Na for Natural Language Processing: a
                single-speaker audio corpus with transcriptions}},
month        = aug,
year         = 2021,
publisher    = {Zenodo},
version      = {1.0},
doi          = {10.5281/zenodo.5336698},
url          = {https://doi.org/10.5281/zenodo.5336698}
    }
    """,
    "japh1234": """\
@misc{jacques_guillaume_2021_5521112,
author       = {Jacques, Guillaume and
                Galliot, Benjamin and
                Guillaume, Séverine},
title        = {{Japhug for Natural Language Processing: a single-
                speaker audio corpus with transcriptions}},
month        = sep,
year         = 2021,
publisher    = {Zenodo},
version      = {1.0},
doi          = {10.5281/zenodo.5521112},
url          = {https://doi.org/10.5281/zenodo.5521112}
    }
"""
}

_DESCRIPTION = """\
These datasets are extracts from the Pangloss collection and have
been preprocessed for ASR experiments in Na and Japhug.
"""

_HOMEPAGE = "https://pangloss.cnrs.fr/"

_LICENSE = "https://creativecommons.org/licenses/by-nc-sa/4.0/fr/legalcode"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)

_VERSION = datasets.Version("1.0.0")

_LANGUAGES = {
    "yong1288": {
        "url": "https://mycore.core-cloud.net/index.php/s/vaGMeRf4Iij8MWR/download",
        "homepage": "https://zenodo.org/record/5336698",
        "description": "Yongning Na dataset",
        "translations": ["fr", "en", "zh"]
    },
    "japh1234": {
        "url": "https://mycore.core-cloud.net/index.php/s/kuQCxmyVcUFWroV/download",
        "homepage": "https://zenodo.org/record/5521112",
        "description": "Japhug dataset",
        "translations": ["fr", "zh"]
    }
}

# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class PanglossDataset(datasets.GeneratorBasedBuilder):
    """The Pangloss datasets are extracts from Pangloss Collections that can be used for ASR experiments in these languages."""
    field_translations = {
        "chemin_audio": "path",
        "nature": "doctype",
        "forme": "sentence",
        "locuteur": "speaker",
        "traduction:fr": "translation:fr",
        "traduction:en": "translation:en",
        "traduction:zh": "translation:zh"
    }

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name=language_name, version=_VERSION, description=language_data["description"])
        for language_name, language_data in _LANGUAGES.items()
    ]

    #DEFAULT_CONFIG_NAME = "na"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        features = datasets.Features(
            {
                "path": datasets.Value("string"),
                "audio": datasets.features.Audio(sampling_rate=16_000),
                "sentence": datasets.Value("string"),
                "doctype": datasets.Value("string"),
                "speaker": datasets.Value("string"),
                **{f"translation:{language_code}": datasets.Value("string") for language_code in _LANGUAGES[self.config.name]["translations"]}
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
            task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="forme")],

        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _LANGUAGES[self.config.name]["url"]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "train.csv"),
                    "split": "train"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "test.csv"),
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir, self.config.name, "validation.csv"),
                    "split": "validation"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(filepath, encoding="utf-8") as file_descriptor:
            reader = csv.DictReader(file_descriptor)
            for key, row in enumerate(reader):
                translated_fieldnames = [self.field_translations[fieldname] for fieldname in reader.fieldnames if fieldname in self.field_translations.keys()]
                data = dict(zip(translated_fieldnames, row.values()))
                data["audio"] = os.path.join(os.path.dirname(filepath), data["path"])
                # Yields examples as (key, example) tuples
                yield key, data


if __name__ == "__main__":
    # for language in _LANGUAGES.keys():
    datasets.load_dataset("datasets/pangloss/pangloss.py", "japh1234")

# datasets-cli test datasets/pangloss --save_infos --all_configs
# datasets-cli dummy_data datasets/pangloss --auto_generate