Datasets:
Tasks:
Translation
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" NLPGhana Voice Dataset""" | |
from __future__ import absolute_import, division, print_function | |
import os | |
import datasets | |
#_DATA_URL = "https://zenodo.org/record/4641533/files/ak.tar.gz?download=1" | |
#_DATA_URL = 'https://www.dropbox.com/s/o6k13voiy8kdhhk/ak.tar.gz?dl=1' | |
_DATA_URL = "ak.tar.gz" | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
This work is comprised of audio data of Twi, a low resourced language spoken by the Akan people in Ghana. | |
This has been adapted by NLPGhana. | |
""" | |
_HOMEPAGE = "https://ghananlp.org/" | |
_LICENSE = "" | |
_LANGUAGES = { | |
"ak": { | |
"Language": "Twi", | |
"Date": "2023-07-08", | |
"Size": "753 MB", | |
"Version": "tw_05_2023-07-08", | |
}, | |
} | |
class NLPGhanaVoiceConfig(datasets.BuilderConfig): | |
"""BuilderConfig for NLPGhana.""" | |
def __init__(self, name, sub_version, **kwargs): | |
""" | |
Args: | |
data_dir: `string`, the path to the folder containing the files in the | |
downloaded .tar | |
citation: `string`, citation for the data set | |
url: `string`, url for information about the data set | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
self.sub_version = sub_version | |
self.language = kwargs.pop("language", None) | |
self.date_of_snapshot = kwargs.pop("date", None) | |
self.size = kwargs.pop("size", None) | |
description = f"NLPGhana speech to text dataset in {self.language} version {self.sub_version} of {self.date_of_snapshot}. The dataset has a size of {self.size}" | |
super(NLPGhanaVoiceConfig, self).__init__( | |
name=name, version=datasets.Version("1.0.5", ""), description=description, **kwargs | |
) | |
class NLPGhanaVoice(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
NLPGhanaVoiceConfig( | |
name=lang_id, | |
language=_LANGUAGES[lang_id]["Language"], | |
sub_version=_LANGUAGES[lang_id]["Version"], | |
date=_LANGUAGES[lang_id]["Date"], | |
size=_LANGUAGES[lang_id]["Size"], | |
) | |
for lang_id in _LANGUAGES.keys() | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"user_id": datasets.Value("string"), | |
"path": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"durationMsec": datasets.Value("int64"), | |
"sampleRate": datasets.Value("int64"), | |
"speaker_gender": datasets.Value("string"), | |
"mother_tongue": datasets.Value("string"), | |
"date": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=None, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_path = dl_manager.download_and_extract(_DATA_URL) | |
abs_path_to_data = os.path.join(dl_path, self.config.name) | |
abs_path_to_clips = os.path.join(abs_path_to_data, "clips") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(abs_path_to_data, "train.tsv"), | |
"path_to_clips": abs_path_to_clips, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(abs_path_to_data, "test.tsv"), | |
"path_to_clips": abs_path_to_clips, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(abs_path_to_data, "validation.tsv"), | |
"path_to_clips": abs_path_to_clips, | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, path_to_clips): | |
""" Yields examples. """ | |
data_fields = list(self._info().features.keys()) | |
path_idx = data_fields.index("path") | |
with open(filepath, encoding="utf-8") as f: | |
lines = f.readlines() | |
headline = lines[0] | |
column_names = headline.strip().split("\t") | |
assert ( | |
column_names == data_fields | |
), f"The file should have {data_fields} as column names, but has {column_names}" | |
for id_, line in enumerate(lines[1:]): | |
field_values = line.strip().split("\t") | |
# set absolute path for mp3 audio file | |
field_values[path_idx] = os.path.join(path_to_clips, field_values[path_idx]) | |
# if data is incomplete, fill with empty values | |
if len(field_values) < len(data_fields): | |
field_values += (len(data_fields) - len(field_values)) * ["''"] | |
yield id_, {key: value for key, value in zip(data_fields, field_values)} |