Datasets:
Size:
10K<n<100K
ArXiv:
File size: 3,396 Bytes
340d1ea c8a4134 340d1ea c8a4134 340d1ea c8a4134 340d1ea c8a4134 340d1ea c8a4134 340d1ea e5b16aa 340d1ea b5824c6 53e1538 96a54e3 b5824c6 77dfcf5 b5824c6 97a925f 43b2a51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- asm
- bgc
- bht
- ckb
- eng
- ewe
- fra
- guj
- ibo
- kan
- lin
- luo
- mal
- mar
- nag
- nde
- nlx
- pan
- peg
- rus
- tam
- tel
- twi
- ukr
- urd
- vie
- yor
task_categories:
- text-classification
- audio-classification
size_categories:
- 10K<n<100K
---
# SpeechTaxi
## Usage
```python
# pip install datasets pandas soundfile
from datasets import load_dataset
dataset = load_dataset(
"LennartKeller/SpeechTaxi",
name="ukr",
split="train",
trust_remote_code=True
)
```
## Overview
| | Language | alpha3 | train | test | dev | total |
|---:|:-------------------------|:-----------|--------:|-------:|------:|--------:|
| 0 | Vietnamese | vie | 856 | 111 | 106 | 1073 |
| 1 | French | fra | 851 | 108 | 106 | 1065 |
| 2 | Russian | rus | 822 | 107 | 102 | 1031 |
| 3 | Ukrainian | ukr | 751 | 97 | 89 | 937 |
| 4 | Kannada | kan | 740 | 100 | 89 | 929 |
| 5 | Gujarati | guj | 740 | 100 | 89 | 929 |
| 6 | Yoruba | yor | 739 | 100 | 88 | 927 |
| 7 | Punjabi | pan | 739 | 100 | 88 | 927 |
| 8 | Naga Pidgin | nag | 739 | 100 | 89 | 928 |
| 9 | Luo (Kenya and Tanzania) | luo | 738 | 100 | 88 | 926 |
| 10 | Tamil | tam | 733 | 100 | 89 | 922 |
| 11 | Marathi | mar | 733 | 99 | 87 | 919 |
| 12 | Assamese | asm | 732 | 98 | 88 | 918 |
| 13 | Haryanvi | bgc | 729 | 100 | 87 | 916 |
| 14 | Bhattiyali | bht | 726 | 98 | 88 | 912 |
| 15 | Malayalam | mal | 724 | 100 | 89 | 913 |
| 16 | Ewe | ewe | 724 | 98 | 86 | 908 |
| 17 | Central Kurdish | ckb | 723 | 93 | 82 | 898 |
| 18 | Telugu | tel | 722 | 96 | 85 | 903 |
| 19 | Igbo | ibo | 720 | 96 | 87 | 903 |
| 20 | Pengo | peg | 707 | 94 | 86 | 887 |
| 21 | Ndebele | nde | 699 | 88 | 85 | 872 |
| 22 | Asante Twi | tw-asante | 693 | 92 | 88 | 873 |
| 23 | Akuapem Twi | tw-akuapem | 692 | 91 | 84 | 867 |
| 24 | Urdu | urd | 674 | 95 | 80 | 849 |
| 25 | Nahali | nlx | 672 | 92 | 85 | 849 |
| 26 | English | eng | 569 | 81 | 74 | 724 |
| 27 | Lingala | lin | 560 | 75 | 61 | 696 |
## Citation
```bibtex
@misc{keller2024speechtaximultilingualsemanticspeech,
title={SpeechTaxi: On Multilingual Semantic Speech Classification},
author={Lennart Keller and Goran Glavaš},
year={2024},
eprint={2409.06372},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.06372},
}
``` |