\n# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """CC-NEWS-ES-titles: Title generation from CC-NEWS in Spanish.""" import json import datasets from datasets.tasks import Summarization logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = "" _HOMEPAGE = "" _LICENSE = "" _URL = "https://huggingface.co/datasets/LeoCordoba/CC-NEWS-ES-titles/resolve/main/" _URLS = { "train": _URL + "train.jsonl", "test": _URL + "test.jsonl", "eval": _URL + "eval.jsonl" } class CCNewsESTitlesConfig(datasets.BuilderConfig): """BuilderConfig for CCNewsESTitles.""" def __init__(self, **kwargs): """BuilderConfig for CCNewsESTitles. Args: **kwargs: keyword arguments forwarded to super. """ super(CCNewsESTitlesConfig, self).__init__(**kwargs) class CCNewsESTitles(datasets.GeneratorBasedBuilder): """Title generation dataset in Spanish from CC-NEWS""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ CCNewsESTitlesConfig( ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "output_text": datasets.Value("string") } ), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train = dl_manager.download_and_extract(_URLS["train"]) eval_ = dl_manager.download_and_extract(_URLS["eval"]) test = dl_manager.download_and_extract(_URLS["test"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": eval_}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test}) ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) data = [] with open(filepath) as f: for line in f: data.append(json.loads(line)) for idx, obs in enumerate(data): yield idx, obs