|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CC-NEWS-ES: CC-NEWS in Spanish.""" |
|
|
|
|
|
import json |
|
import os |
|
import datasets |
|
from datasets.tasks import Summarization |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ """ |
|
_DESCRIPTION = "" |
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
class CCNewsESConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CCNewsES.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for CCNewsES. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(CCNewsESConfig, self).__init__(**kwargs) |
|
|
|
class CCNewsES(datasets.GeneratorBasedBuilder): |
|
"""Title generation dataset in Spanish from CC-NEWS""" |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
CCNewsESConfig(name=domain) for domain in ["ar","bo","br","cl","co","com","cr","es","gt","hn","mx","ni","pa","pe","pr","py","sv","uy","ve"] |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"country": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"id": datasets.Value("int32"), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
name = self.config.name |
|
_URL = f"https://huggingface.co/datasets/LeoCordoba/CC-NEWS-ES/resolve/main/{name}.zip" |
|
train = dl_manager.download_and_extract(_URL) |
|
if name in ["com", "es", "mx"]: |
|
files = os.listdir(train) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": [os.path.join(train, f) for f in files]}) |
|
] |
|
else: |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": [os.path.join(train, f"{name}.json")]}) |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("generating examples from = %s", filepath) |
|
data = [] |
|
for f in filepath: |
|
with open(f, "r") as f: |
|
data = json.load(f) |
|
for idx, obs in enumerate(data): |
|
yield idx, obs |