File size: 5,509 Bytes
3c33491 7f97f62 d635639 3c33491 18e3316 3c33491 18e3316 3c33491 18e3316 3c33491 18e3316 3c33491 d635639 18e3316 d635639 18e3316 d635639 18e3316 d635639 18e3316 d635639 18e3316 d635639 54776a7 d635639 54776a7 d635639 54776a7 d635639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
"""Graptoloidea Specimens dataset."""
import os
import random
from typing import List
import datasets
import pandas as pd
import numpy as np
import csv
import logging
from PIL import Image
import ast
_CITATION = """\
@dataset{Xu2022graptolitespecimens
title = {High-resolution images of 1550 Ordovician to Silurian graptolite specimens for global correlation and shale gas exploration},
author = {Honghe Xu},
year = {2022},
url = {https://zenodo.org/records/6194943},
publisher = {Zenodo}
}
"""
_DESCRIPTION = """\
This dataset includes high-quality images of specimens, each meticulously tagged with taxonomic details such as suborder, infraorder, family, and genus.
Additionally, the dataset is enriched with crucial metadata like the geological stage, mean age value, and specific locality coordinates (longitude, latitude, and horizon).
References to original specimen publications are also provided, ensuring comprehensive documentation for academic rigor.
"""
_HOMEPAGE = "https://zenodo.org/records/6194943"
_LICENSE = "CC BY 4.0"
_URL = "https://raw.githubusercontent.com/LeoZhangzaolin/photos/main/Final_GS_with_Images5.csv"
class GraptoloideaSpecimensDataset(datasets.GeneratorBasedBuilder):
"""This dataset script retrives my processed dataset. It stands as a vital resource for researchers and enthusiasts in the field of paleontology
, particularly those focusing on graptolites. Its compilation not only aids in the study of these fascinating creatures but also contributes
significantly to our understanding of Earth's biological and geological past.
"""
_URL = _URL
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"Suborder": datasets.Value("string"),
"Infraorder": datasets.Value("string"),
"Family (Subfamily)": datasets.Value("string"),
"Genus": datasets.Value("string"),
"tagged species name": datasets.Value("string"),
"image": datasets.Value("string"),
"Stage": datasets.Value("string"),
"mean age value": datasets.Value("float64"),
"Locality (Longitude, Latitude, Horizon)": datasets.Value("string"),
"Reference (specimens firstly published)": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license = _LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloaded_file = dl_manager.download_and_extract(self._URL)
# Read the CSV file
df = pd.read_csv(downloaded_file)
df = df.sample(frac=1).reset_index(drop=True) # Shuffle the dataset
# Splitting the dataset
train_size = int(0.7 * len(df))
test_size = int(0.15 * len(df))
train_df = df[:train_size]
test_df = df[train_size:train_size + test_size]
validation_df = df[train_size + test_size:]
# Save split dataframes to temporary CSV files
train_file = '/tmp/train_split.csv'
test_file = '/tmp/test_split.csv'
validation_file = '/tmp/validation_split.csv'
train_df.to_csv(train_file, index=False)
test_df.to_csv(test_file, index=False)
validation_df.to_csv(validation_file, index=False)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_file}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_file}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_file}),
]
def _generate_examples(self, filepath):
"""This function returns the examples."""
logging.info("generating examples from = %s", filepath)
with open(filepath, encoding='utf-8') as f:
reader = csv.DictReader(f)
key = 0
for row in reader:
key += 1
# Extracting data from each column
suborder = row['Suborder'].strip()
infraorder = row['Infraorder'].strip()
family_subfamily = row['Family (Subfamily)'].strip()
genus = row['Genus'].strip()
species_name = row['tagged species name'].strip()
image = row['image'].strip()
stage = row['Stage'].strip()
mean_age = row['mean age value']
locality = row['Locality (Longitude, Latitude, Horizon)'].strip()
reference = row['Reference (specimens firstly published)'].strip()
# Constructing the example
yield key, {
"Suborder": suborder,
"Infraorder": infraorder,
"Family (Subfamily)": family_subfamily,
"Genus": genus,
"tagged species name": species_name,
"image": image,
"Stage": stage,
"mean age value": mean_age,
"Locality (Longitude, Latitude, Horizon)": locality,
"Reference (specimens firstly published)": reference,
}
|