LeoZhangzaolin commited on
Commit
b87ec34
1 Parent(s): 9eea720

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +190 -0
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - no-annotation
4
+ language_creators:
5
+ - found
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - image-classification
18
+ - object-detection
19
+ pretty_name: GraptoloideaSpecimensDataset
20
+ tags:
21
+ - graptoloidea
22
+ - paleontology
23
+ - specimens
24
+ - fossils
25
+ - biology
26
+ - earth-science
27
+ dataset_info:
28
+ features:
29
+ - name: Suborder
30
+ dtype: string
31
+ - name: Infraorder
32
+ dtype: string
33
+ - name: Family (Subfamily)
34
+ dtype: string
35
+ - name: Genus
36
+ dtype: string
37
+ - name: tagged species name
38
+ dtype: string
39
+ - name: image
40
+ dtype: image
41
+ - name: Stage
42
+ dtype: string
43
+ - name: mean age value
44
+ dtype: float
45
+ - name: Locality (Longitude, Latitude, Horizon)
46
+ dtype: string
47
+ - name: Reference (specimens firstly published)
48
+ dtype: string
49
+ splits:
50
+ - name: train
51
+ num_examples: 977
52
+ - name: test
53
+ num_examples: 209
54
+ - name: validation
55
+ num_examples: 211
56
+ configs:
57
+ - config_name: default
58
+ data_files:
59
+ - split: train
60
+ path: data/train-*
61
+ - split: test
62
+ path: data/test-*
63
+ - split: validation
64
+ path: data/validation-*
65
+ ---
66
+ # Dataset Card for Graptoloidea Specimens Imaging
67
+
68
+ ## Table of Contents
69
+ - [Table of Contents](#table-of-contents)
70
+ - [Dataset Summary](#dataset-summary)
71
+ - [Dataset Preprocessing](#dataset-preprocessing)
72
+ - [Dataset Description](#dataset-description)
73
+ - [Supported Tasks](#supported-tasks)
74
+ - [Languages](#languages)
75
+ - [Dataset Structure](#dataset-structure)
76
+ - [Data Instance](#data-instance)
77
+ - [Data Fields](#data-fields)
78
+ - [Data Splits](#data-splits)
79
+ - [Dataset Creation](#dataset-creation)
80
+ - [Curation Rationale](#curation-rationale)
81
+ - [Source Data](#source-data)
82
+ - [Data Processing](#data-processing)
83
+ - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
84
+ - [Citation](#citation)
85
+
86
+
87
+ ## Dataset Summary
88
+ This dataset offers a detailed examination of Graptoloidea specimens, featuring attributes like image file paths, suborder, infraorder, family (including subfamily), tagged species names, geological stages, mean age values, and locality details (with coordinates and horizon information), complemented by original reference citations for each specimen. It serves as a comprehensive resource for paleontological research, emphasizing morphological and stratigraphic analysis of these ancient colonial animals.
89
+
90
+ ## Dataset Preprocessing
91
+ This dataset doesn't download the images locally by default. Instead, it exposes URLs to the images. To fetch the images, use the following code:
92
+
93
+ ```python
94
+ from concurrent.futures import ThreadPoolExecutor
95
+ from functools import partial
96
+ import io
97
+ import urllib
98
+ import PIL.Image
99
+ from datasets import load_dataset
100
+ from datasets.utils.file_utils import get_datasets_user_agent
101
+ USER_AGENT = get_datasets_user_agent()
102
+ def fetch_single_image(image_url, timeout=None, retries=0):
103
+ for _ in range(retries + 1):
104
+ try:
105
+ request = urllib.request.Request(
106
+ image_url,
107
+ data=None,
108
+ headers={"user-agent": USER_AGENT},
109
+ )
110
+ with urllib.request.urlopen(request, timeout=timeout) as req:
111
+ image = PIL.Image.open(io.BytesIO(req.read()))
112
+ break
113
+ except Exception:
114
+ image = None
115
+ return image
116
+ def fetch_images(batch, num_threads, timeout=None, retries=0):
117
+ fetch_single_image_with_args = partial(fetch_single_image, timeout=timeout, retries=retries)
118
+ with ThreadPoolExecutor(max_workers=num_threads) as executor:
119
+ batch["image"] = list(executor.map(fetch_single_image_with_args, batch["image"]))
120
+ return batch
121
+ num_threads = 20
122
+ dset = load_dataset('Graptolodiea-Speciemens-Imaging.py')
123
+ dset = dset.map(fetch_images, batched=True, batch_size=100, fn_kwargs={"num_threads": num_threads})
124
+ ```
125
+ ## Dataset description
126
+
127
+
128
+ ### Supported Tasks
129
+ - **Paleontological Analysis and Classification**: Utilizing the dataset for detailed classification of Graptoloidea species, including sorting by suborder, infraorder, and family. Fundamental for researchers in paleontology to understand evolutionary trends and species distinctions.
130
+ - **Age Estimation and Stratigraphic Correlation**: Leveraging mean age values and stage data to estimate the geological age of specimens and correlate them with stratigraphic layers. Crucial for geologists and paleontologists in mapping the geological timeline and understanding the Earth's history.
131
+ - **Geographical Distribution Study**: Analyzing locality data to study the geographical distribution and migration patterns of Graptoloidea species. Can reveal insights into ancient ecological conditions and biogeographic events.
132
+ - **Morphological Analysis**: Using the provided specimen images for morphological studies, enabling the identification of unique features and variations within the Graptoloidea order. Important for taxonomic classification and evolutionary studies.
133
+ - **Data-Driven Paleobiology**: Applying machine learning and statistical methods to uncover patterns and relationships in Graptoloidea evolution, diversity, and extinction events.
134
+ - **Morphometric Analysis**: Employing image processing techniques to measure and analyze morphological features of the specimens, such as length, shape, branching patterns, and other key characteristics.
135
+ - **Virtual Reconstruction and 3D Modeling**: Using specimen images to create detailed 3D models of Graptoloidea for virtual reality experiences, aiding in both research and educational endeavors.
136
+ - **Educational and Outreach Tools**: Developing interactive tools and applications for educational purposes, using specimen images to engage and teach students and the public about Graptoloidea and paleontology.
137
+ - **Crowdsourcing and Citizen Science Projects**: Allowing citizen scientists to access and annotate the images, contributing to data collection and analysis efforts.
138
+
139
+ ### Language
140
+ - **English**
141
+
142
+ ## Dataset Structure
143
+
144
+ ### Data instance
145
+ ```
146
+ {
147
+ 'Suborder': 'Axonophora Frech, 1897',
148
+ 'Infraorder': 'Neograptina Štorch & others, 2011',
149
+ 'Family (Subfamily)': 'Dimorphograptidae Elles & Wood, 1908 (no subfamily)',
150
+ 'Genus': 'Akidograptus',
151
+ 'tagged species name': 'Akidograptus ascensus',
152
+ 'image': 'https://raw.githubusercontent.com/LeoZhangzaolin/photos/main/14545Akidograptus_ascensus.jpg',
153
+ 'Stage': 'Rhuddanian, Llandovery (early Silurian)',
154
+ 'mean age value': 442.3,
155
+ 'Locality (Longitude, Latitude, Horizon)': 'Huangshu Village in Anji County, Zhejiang Province (119.676, 30.608, Lower Silurian)',
156
+ 'Reference (specimens firstly published)': 'Yang, D.Q. 1964. Some Lower Silurian graptolites from Anji, northwestern Zhejiang (Chekiang). Acta Palaeontologica Sinica, 12(4): 628-635.'
157
+ }
158
+ ```
159
+
160
+ ### Data Fields
161
+ - `Suborder` (string): Suborder of the graptoloidea.
162
+ - `Infraorder` (string): Infraorder of the graptoloidea.
163
+ - `Family (Subfamily)` (string): Family of the graptoloidea (with subfamily).
164
+ - `Genus` (string): genus of the graptoloidea
165
+ - `tagged species name` (string): The tagged name for the graptoloidea.
166
+ - `image` (string): File path for the image file.
167
+ - `Stage` (string): Which period is this graptoloidea in.
168
+ - `mean age value` (float): About how long has this specimen lasts.
169
+ - `Locality (Longitude, Latitude, Horizon)` (str): Where found the specimen (with longitude, latitude, and horizon).
170
+ - `Reference (specimens firstly published` (str): Who first publish this specimen.
171
+
172
+ ### Data Splits
173
+ 70% of data in training set; 15% of data in testing set; 15% of data in validation set.
174
+
175
+ ## Dataset Creation
176
+
177
+ ### Curation Rationale
178
+ The primary objective of curating the Graptoloidea Specimens dataset is to provide a comprehensive and accessible resource for the study and analysis of Graptoloidea, an order of extinct marine colonial organisms. This dataset is intended to support a wide range of scientific endeavors, including paleobiological research, evolutionary studies, and educational purposes in the field of paleontology. By assembling high-resolution images and detailed taxonomic information, the dataset aims to facilitate in-depth investigations into the morphology and classification of these ancient organisms, contributing to a broader understanding of Earth's geological history and biodiversity.
179
+
180
+ ### Source Data
181
+ https://zenodo.org/records/6194943
182
+
183
+ ### Data Processing
184
+ Specific processing explainition and code in CSV_Processing.py
185
+ ## Bias, Risks, and Limitations
186
+ - **Technological and Methodological Constraints**: Utility is tied to current state of paleontological methodologies and technologies. Future advancements might necessitate reevaluation.
187
+ - **External Environmental Factors**: Might not fully account for the environmental conditions under which the specimens lived or were fossilized.
188
+ - **Imaging and Interpretation Limitations**: Quality and resolution of specimen images can vary, affecting morphological analyses. Interpretations based on images are subject to observer's expertise and bias.
189
+ ## Citation
190
+ DOI: [10.5281/zenodo.5205215](https://doi.org/10.5281/zenodo.5205215)