LeoZhangzaolin
commited on
Commit
•
e012aec
1
Parent(s):
7f97f62
DataCleaning and ImageTransfering.py
Browse files- Project _1.py +136 -0
Project _1.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#### delete unuseful columns
|
2 |
+
import csv
|
3 |
+
|
4 |
+
file_path = '/Users/leozhangzaolin/Downloads/Graptolite specimens.csv'
|
5 |
+
|
6 |
+
with open(file_path, newline='', encoding='utf-8') as file:
|
7 |
+
reader = csv.reader(file)
|
8 |
+
data = list(reader)
|
9 |
+
|
10 |
+
columns_to_delete = [
|
11 |
+
"species ID", "Phylum", "Class", "Order", "revised species name",
|
12 |
+
"total number of specimens", "specimens Serial No", "显微镜照片数量", "SLR photo No",
|
13 |
+
"相机照片数量", "跑数据照片总数", "备注", "age from", "age to", "collection No", "Microscrope photo No"
|
14 |
+
]
|
15 |
+
|
16 |
+
header = data[0]
|
17 |
+
indices_to_delete = [header.index(column) for column in columns_to_delete if column in header]
|
18 |
+
|
19 |
+
indices_to_delete.sort(reverse=True)
|
20 |
+
|
21 |
+
for row in data:
|
22 |
+
for index in indices_to_delete:
|
23 |
+
del row[index]
|
24 |
+
|
25 |
+
new_file_path = '/Users/leozhangzaolin/desktop/New_GS.csv'
|
26 |
+
|
27 |
+
with open(new_file_path, mode='w', newline='', encoding='utf-8') as file:
|
28 |
+
writer = csv.writer(file)
|
29 |
+
writer.writerows(data)
|
30 |
+
|
31 |
+
|
32 |
+
#### merge columns
|
33 |
+
|
34 |
+
file_path1 = '/Users/leozhangzaolin/desktop/New_GS.csv'
|
35 |
+
|
36 |
+
with open(file_path1, newline='', encoding='utf-8') as file1:
|
37 |
+
reader1 = csv.reader(file1)
|
38 |
+
data1 = list(reader1)
|
39 |
+
|
40 |
+
header1 = data1[0]
|
41 |
+
family_index1 = header1.index('Family') if 'Family' in header1 else None
|
42 |
+
subfamily_index1 = header1.index('Subfamily') if 'Subfamily' in header1 else None
|
43 |
+
locality_index1 = header1.index('Locality') if 'Locality' in header1 else None
|
44 |
+
longitude_index1 = header1.index('Longitude') if 'Longitude' in header1 else None
|
45 |
+
latitude_index1 = header1.index('Latitude') if 'Latitude' in header1 else None
|
46 |
+
horizon_index1 = header1.index('Horizon') if 'Horizon' in header1 else None
|
47 |
+
|
48 |
+
for row1 in data1[1:]:
|
49 |
+
family1 = row1[family_index1] if family_index1 is not None else ''
|
50 |
+
subfamily1 = row1[subfamily_index1] if subfamily_index1 is not None else 'no subfamily'
|
51 |
+
row1[family_index1] = f"{family1} ({subfamily1})" if subfamily_index1 is not None else family1
|
52 |
+
|
53 |
+
locality1 = row1[locality_index1] if locality_index1 is not None else ''
|
54 |
+
longitude1 = row1[longitude_index1] if longitude_index1 is not None else ''
|
55 |
+
latitude1 = row1[latitude_index1] if latitude_index1 is not None else ''
|
56 |
+
horizon1 = row1[horizon_index1] if horizon_index1 is not None else ''
|
57 |
+
row1[locality_index1] = f"{locality1} ({longitude1}, {latitude1}, {horizon1})"
|
58 |
+
|
59 |
+
header1[family_index1] = 'Family (Subfamily)'
|
60 |
+
header1[locality_index1] = 'Locality (Longitude, Latitude, Horizon)'
|
61 |
+
|
62 |
+
indices_to_delete1 = sorted([subfamily_index1, longitude_index1, latitude_index1, horizon_index1], reverse=True)
|
63 |
+
for index1 in indices_to_delete1:
|
64 |
+
if index1 is not None:
|
65 |
+
for row1 in data1:
|
66 |
+
del row1[index1]
|
67 |
+
|
68 |
+
new_file_path1 = '/Users/leozhangzaolin/desktop/New_GS_1.csv'
|
69 |
+
|
70 |
+
with open(new_file_path1, mode='w', newline='', encoding='utf-8') as file1:
|
71 |
+
writer1 = csv.writer(file1)
|
72 |
+
writer1.writerows(data1)
|
73 |
+
|
74 |
+
#### read images
|
75 |
+
import os
|
76 |
+
import numpy as np
|
77 |
+
from PIL import Image
|
78 |
+
import pandas as pd
|
79 |
+
|
80 |
+
# Paths
|
81 |
+
csv_file_path = '/Users/leozhangzaolin/desktop/New_GS_1.csv'
|
82 |
+
image_dir_paths = ['/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 1',
|
83 |
+
'/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 2']
|
84 |
+
npy_save_dir = '/Users/leozhangzaolin/Desktop/arrays'
|
85 |
+
|
86 |
+
# Normalize file extensions in the image directories
|
87 |
+
def normalize_file_extensions(dir_path):
|
88 |
+
for filename in os.listdir(dir_path):
|
89 |
+
if filename.lower().endswith('.jpg') and not filename.endswith('.jpg'):
|
90 |
+
base, ext = os.path.splitext(filename)
|
91 |
+
new_filename = base + '.jpg'
|
92 |
+
os.rename(os.path.join(dir_path, filename),
|
93 |
+
os.path.join(dir_path, new_filename))
|
94 |
+
|
95 |
+
for path in image_dir_paths:
|
96 |
+
normalize_file_extensions(path)
|
97 |
+
|
98 |
+
# Load the CSV file
|
99 |
+
df = pd.read_csv(csv_file_path)
|
100 |
+
|
101 |
+
# Function to process and resize the image
|
102 |
+
def process_image(image_name, save_dir, max_size=(1024, 1024)):
|
103 |
+
image_base_name = os.path.splitext(image_name)[0]
|
104 |
+
image_paths = [os.path.join(dir_path, image_base_name + suffix)
|
105 |
+
for dir_path in image_dir_paths
|
106 |
+
for suffix in ['_S.jpg', '_S.JPG']]
|
107 |
+
|
108 |
+
image_path = next((path for path in image_paths if os.path.exists(path)), None)
|
109 |
+
|
110 |
+
if image_path is None:
|
111 |
+
return None
|
112 |
+
|
113 |
+
with Image.open(image_path) as img:
|
114 |
+
# Resize the image using LANCZOS filter (replacement for ANTIALIAS)
|
115 |
+
img.thumbnail(max_size, Image.Resampling.LANCZOS)
|
116 |
+
image_array = np.array(img)
|
117 |
+
npy_filename = image_base_name + '_S.npy'
|
118 |
+
npy_path = os.path.join(save_dir, npy_filename)
|
119 |
+
np.save(npy_path, image_array)
|
120 |
+
return npy_path
|
121 |
+
|
122 |
+
# Create a directory to save the numpy arrays
|
123 |
+
os.makedirs(npy_save_dir, exist_ok=True)
|
124 |
+
|
125 |
+
# Process each image and update the 'image file name' column
|
126 |
+
df['image file name'] = df['image file name'].apply(lambda x: process_image(x, npy_save_dir))
|
127 |
+
|
128 |
+
# Remove rows where the image was not found
|
129 |
+
df = df.dropna(subset=['image file name'])
|
130 |
+
|
131 |
+
# Rename the 'image file name' column to 'image'
|
132 |
+
df.rename(columns={'image file name': 'image'}, inplace=True)
|
133 |
+
|
134 |
+
# Save the updated DataFrame to a new CSV file
|
135 |
+
updated_csv_path = '/Users/leozhangzaolin/Desktop/New_GS_2_updated_images.csv'
|
136 |
+
df.to_csv(updated_csv_path, index=False)
|