#### Firstly, I read specimen data from a CSV file, merges and reformats certain columns, and then converts this data into a pandas DataFrame. #### Then, I process associated images by resizing them and saving them in a specified output directory. #### Next, I update the DataFrame with the paths to the processed images and save this enhanced dataset as a new CSV file. #### Finally, I upload photos to github and replace the url to corresponding names. import csv import os import cv2 import pandas as pd # --- Initial Setup --- initial_csv_file_path = '/Users/leozhangzaolin/Desktop/Graptolite specimens.csv' image_dir_paths = ['/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 1', '/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 2'] output_image_dir = '/Users/leozhangzaolin/Desktop/project 1/output_images' target_size = (256, 256) # Ensure output directory exists os.makedirs(output_image_dir, exist_ok=True) # --- Read and Process CSV Data --- with open(initial_csv_file_path, newline='', encoding='utf-8') as file: reader = csv.reader(file) data = list(reader) header = data[0] # Find indices for columns to merge family_index = header.index('Family') if 'Family' in header else None subfamily_index = header.index('Subfamily') if 'Subfamily' in header else None locality_index = header.index('Locality') if 'Locality' in header else None longitude_index = header.index('Longitude') if 'Longitude' in header else None latitude_index = header.index('Latitude') if 'Latitude' in header else None horizon_index = header.index('Horizon') if 'Horizon' in header else None # Process rows: merge and delete columns for row in data[1:]: # Merge columns if family_index is not None and subfamily_index is not None: family = row[family_index] subfamily = row[subfamily_index] if row[subfamily_index] else 'no subfamily' row[family_index] = f"{family} ({subfamily})" if locality_index is not None and all([longitude_index, latitude_index, horizon_index]): locality = row[locality_index] longitude = row[longitude_index] latitude = row[latitude_index] horizon = row[horizon_index] row[locality_index] = f"{locality} ({longitude}, {latitude}, {horizon})" # Update header and remove unneeded columns header[family_index] = 'Family (Subfamily)' header[locality_index] = 'Locality (Longitude, Latitude, Horizon)' indices_to_delete = [header.index(column) for column in columns_to_delete if column in header] merged_indices = [subfamily_index, longitude_index, latitude_index, horizon_index] indices_to_delete.extend(merged_indices) indices_to_delete = list(set(indices_to_delete)) indices_to_delete.sort(reverse=True) header = [col for i, col in enumerate(header) if i not in indices_to_delete] for row in data[1:]: for index in indices_to_delete: del row[index] # Convert processed data into a DataFrame df = pd.DataFrame(data[1:], columns=header) # Function to process and save the image, then return the file path def process_and_save_image(image_name, max_size=target_size): image_base_name = os.path.splitext(image_name)[0] image_paths = [os.path.join(dir_path, image_base_name + suffix) for dir_path in image_dir_paths for suffix in ['_S.jpg', '_S.JPG']] image_path = next((path for path in image_paths if os.path.exists(path)), None) if image_path is None: return None # Read and resize the image img = cv2.imread(image_path, cv2.IMREAD_COLOR) img = cv2.resize(img, max_size, interpolation=cv2.INTER_AREA) # Save the image to the output directory output_path = os.path.join(output_image_dir, image_base_name + '.jpg') cv2.imwrite(output_path, img) return output_path # Apply the function to process images and update the DataFrame df['image file name'] = df['image file name'].apply(process_and_save_image) df = df.dropna(subset=['image file name']) # Rename the 'image file name' column to 'image' df.rename(columns={'image file name': 'image'}, inplace=True) # Save the DataFrame to a CSV file final_csv_path = '/Users/leozhangzaolin/Desktop/Final_GS_with_Images5.csv' df.to_csv(final_csv_path, index=False) # take url path to each specimens def update_csv_with_github_links(csv_file_path, github_repo_url, branch_name): updated_rows = [] with open(csv_file_path, mode='r') as file: reader = csv.DictReader(file) for row in reader: image_name = row['image'].split('/')[-1] row['image'] = f"{github_repo_url}/{branch_name}/{image_name}" updated_rows.append(row) # Write updated data back to CSV with open(csv_file_path, mode='w', newline='') as file: writer = csv.DictWriter(file, fieldnames=reader.fieldnames) writer.writeheader() writer.writerows(updated_rows) csv_file = '/Users/leozhangzaolin/Desktop/Final_GS_with_Images5.csv' github_repo_url = 'https://raw.githubusercontent.com/LeoZhangzaolin/photos' branch_name = 'main' update_csv_with_github_links(csv_file, github_repo_url, branch_name)