#### This code shows how I process the data and transfer the images to Numpy arrays on local. After processing, I upload the final csv to github and get the URL. import csv import os import numpy as np from PIL import Image import pandas as pd # --- Initial Setup --- initial_csv_file_path = 'https://github.com/LeoZhangzaolin/photos/blob/main/Graptolite%20specimens.csv' columns_to_delete = [ "species ID", "Phylum", "Class", "Order", "revised species name", "total number of specimens", "specimens Serial No", "显微镜照片数量", "SLR photo No", "相机照片数量", "跑数据照片总数", "备注", "age from", "age to", "collection No", "Microscrope photo No" ] # --- Read and Process CSV Data --- with open(initial_csv_file_path, newline='', encoding='utf-8') as file: reader = csv.reader(file) data = list(reader) header = data[0] # Find indices for columns to merge family_index = header.index('Family') if 'Family' in header else None subfamily_index = header.index('Subfamily') if 'Subfamily' in header else None locality_index = header.index('Locality') if 'Locality' in header else None longitude_index = header.index('Longitude') if 'Longitude' in header else None latitude_index = header.index('Latitude') if 'Latitude' in header else None horizon_index = header.index('Horizon') if 'Horizon' in header else None # Process rows: merge and delete columns for row in data[1:]: # Merge columns if family_index is not None and subfamily_index is not None: family = row[family_index] subfamily = row[subfamily_index] if row[subfamily_index] else 'no subfamily' row[family_index] = f"{family} ({subfamily})" if locality_index is not None and all([longitude_index, latitude_index, horizon_index]): locality = row[locality_index] longitude = row[longitude_index] latitude = row[latitude_index] horizon = row[horizon_index] row[locality_index] = f"{locality} ({longitude}, {latitude}, {horizon})" # Update header and remove unneeded columns header[family_index] = 'Family (Subfamily)' header[locality_index] = 'Locality (Longitude, Latitude, Horizon)' indices_to_delete = [header.index(column) for column in columns_to_delete if column in header] merged_indices = [subfamily_index, longitude_index, latitude_index, horizon_index] indices_to_delete.extend(merged_indices) indices_to_delete = list(set(indices_to_delete)) indices_to_delete.sort(reverse=True) header = [col for i, col in enumerate(header) if i not in indices_to_delete] for row in data[1:]: for index in indices_to_delete: del row[index] # Convert processed data into a DataFrame df = pd.DataFrame(data[1:], columns=header) # --- Image Processing --- # Image directories image_dir_paths = ['/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 1', '/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 2'] # Normalize file extensions in the image directories def normalize_file_extensions(dir_path): for filename in os.listdir(dir_path): if filename.lower().endswith('.jpg') and not filename.endswith('.jpg'): base, ext = os.path.splitext(filename) new_filename = base + '.jpg' os.rename(os.path.join(dir_path, filename), os.path.join(dir_path, new_filename)) for path in image_dir_paths: normalize_file_extensions(path) # Function to process and return the image array def process_image_array(image_name, max_size=(1024, 1024)): image_base_name = os.path.splitext(image_name)[0] image_paths = [os.path.join(dir_path, image_base_name + suffix) for dir_path in image_dir_paths for suffix in ['_S.jpg', '_S.JPG']] image_path = next((path for path in image_paths if os.path.exists(path)), None) if image_path is None: return None with Image.open(image_path) as img: img.thumbnail(max_size, Image.Resampling.LANCZOS) return np.array(img) # Apply the function to embed image arrays in the 'image file name' column df['image file name'] = df['image file name'].apply(process_image_array) df = df.dropna(subset=['image file name']) # Since arrays can't be directly saved in CSV, convert them to a string representation df['image file name'] = df['image file name'].apply(lambda x: np.array2string(x)) # Rename the 'image file name' column to 'image' df.rename(columns={'image file name': 'image'}, inplace=True) # --- Save the Final DataFrame to a CSV File --- final_csv_path = '/Users/leozhangzaolin/Desktop/Final_GS_with_Images.csv' df.to_csv(final_csv_path, index=False)