#### delete unuseful columns import csv file_path = '/Users/leozhangzaolin/Downloads/Graptolite specimens.csv' with open(file_path, newline='', encoding='utf-8') as file: reader = csv.reader(file) data = list(reader) columns_to_delete = [ "species ID", "Phylum", "Class", "Order", "revised species name", "total number of specimens", "specimens Serial No", "显微镜照片数量", "SLR photo No", "相机照片数量", "跑数据照片总数", "备注", "age from", "age to", "collection No", "Microscrope photo No" ] header = data[0] indices_to_delete = [header.index(column) for column in columns_to_delete if column in header] indices_to_delete.sort(reverse=True) for row in data: for index in indices_to_delete: del row[index] new_file_path = '/Users/leozhangzaolin/desktop/New_GS.csv' with open(new_file_path, mode='w', newline='', encoding='utf-8') as file: writer = csv.writer(file) writer.writerows(data) #### merge columns file_path1 = '/Users/leozhangzaolin/desktop/New_GS.csv' with open(file_path1, newline='', encoding='utf-8') as file1: reader1 = csv.reader(file1) data1 = list(reader1) header1 = data1[0] family_index1 = header1.index('Family') if 'Family' in header1 else None subfamily_index1 = header1.index('Subfamily') if 'Subfamily' in header1 else None locality_index1 = header1.index('Locality') if 'Locality' in header1 else None longitude_index1 = header1.index('Longitude') if 'Longitude' in header1 else None latitude_index1 = header1.index('Latitude') if 'Latitude' in header1 else None horizon_index1 = header1.index('Horizon') if 'Horizon' in header1 else None for row1 in data1[1:]: family1 = row1[family_index1] if family_index1 is not None else '' subfamily1 = row1[subfamily_index1] if subfamily_index1 is not None else 'no subfamily' row1[family_index1] = f"{family1} ({subfamily1})" if subfamily_index1 is not None else family1 locality1 = row1[locality_index1] if locality_index1 is not None else '' longitude1 = row1[longitude_index1] if longitude_index1 is not None else '' latitude1 = row1[latitude_index1] if latitude_index1 is not None else '' horizon1 = row1[horizon_index1] if horizon_index1 is not None else '' row1[locality_index1] = f"{locality1} ({longitude1}, {latitude1}, {horizon1})" header1[family_index1] = 'Family (Subfamily)' header1[locality_index1] = 'Locality (Longitude, Latitude, Horizon)' indices_to_delete1 = sorted([subfamily_index1, longitude_index1, latitude_index1, horizon_index1], reverse=True) for index1 in indices_to_delete1: if index1 is not None: for row1 in data1: del row1[index1] new_file_path1 = '/Users/leozhangzaolin/desktop/New_GS_1.csv' with open(new_file_path1, mode='w', newline='', encoding='utf-8') as file1: writer1 = csv.writer(file1) writer1.writerows(data1) #### read images import os import numpy as np from PIL import Image import pandas as pd # Paths csv_file_path = '/Users/leozhangzaolin/desktop/New_GS_1.csv' image_dir_paths = ['/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 1', '/Users/leozhangzaolin/Desktop/project 1/graptolite specimens with scale 2'] npy_save_dir = '/Users/leozhangzaolin/Desktop/arrays' # Normalize file extensions in the image directories def normalize_file_extensions(dir_path): for filename in os.listdir(dir_path): if filename.lower().endswith('.jpg') and not filename.endswith('.jpg'): base, ext = os.path.splitext(filename) new_filename = base + '.jpg' os.rename(os.path.join(dir_path, filename), os.path.join(dir_path, new_filename)) for path in image_dir_paths: normalize_file_extensions(path) # Load the CSV file df = pd.read_csv(csv_file_path) # Function to process and resize the image def process_image(image_name, save_dir, max_size=(1024, 1024)): image_base_name = os.path.splitext(image_name)[0] image_paths = [os.path.join(dir_path, image_base_name + suffix) for dir_path in image_dir_paths for suffix in ['_S.jpg', '_S.JPG']] image_path = next((path for path in image_paths if os.path.exists(path)), None) if image_path is None: return None with Image.open(image_path) as img: # Resize the image using LANCZOS filter (replacement for ANTIALIAS) img.thumbnail(max_size, Image.Resampling.LANCZOS) image_array = np.array(img) npy_filename = image_base_name + '_S.npy' npy_path = os.path.join(save_dir, npy_filename) np.save(npy_path, image_array) return npy_path # Create a directory to save the numpy arrays os.makedirs(npy_save_dir, exist_ok=True) # Process each image and update the 'image file name' column df['image file name'] = df['image file name'].apply(lambda x: process_image(x, npy_save_dir)) # Remove rows where the image was not found df = df.dropna(subset=['image file name']) # Rename the 'image file name' column to 'image' df.rename(columns={'image file name': 'image'}, inplace=True) # Save the updated DataFrame to a new CSV file updated_csv_path = '/Users/leozhangzaolin/Desktop/New_GS_2_updated_images.csv' df.to_csv(updated_csv_path, index=False)