import os import csv import datasets from .release_stats import STATS _DATASET_DICT = { "Aldrine": ["20240730", "20240801", "20240805", "20240812"], "Nabbuto": ["20240730", "20240801", "20240806", "20240812", "20240819", "20240826"], "Nakawunde": ["20240819", "20240826"], "Namala": ["20240730", "20240807", "20240812", "20240819", "20240826"], "William": ["20240730"], "Solomon": ["20240805", "20240812", "20240819", "20240826"], } _HOMEPAGE = "https://huggingface.co/Loyage/startimes_luganda_recording" _DATA_URL = "https://huggingface.co/datasets/Loyage/startimes_luganda_recording/resolve/main/data" class StartimesLugandaRecordingConfig(datasets.BuilderConfig): """BuilderConfig for StartimesLugandaRecording.""" def __init__(self, name, version, **kwargs): self.language = "Luganda" description = ( f"Luganda Speaking Voice Datasets recorded by Startimes. " f"All rights reserved by Startimes. " ) super(StartimesLugandaRecordingConfig, self).__init__( name=name, version=datasets.Version(version), description=description, **kwargs, ) class StartimesLugandaRecording(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ StartimesLugandaRecordingConfig( name="Luganda", version="1.0.0", ) ] def _info(self): return datasets.DatasetInfo( description="Luganda Speaking Voice Datasets recorded by Startimes. All rights reserved by Startimes.", features=datasets.Features( { "path": datasets.Value("string"), "sentence": datasets.Value("string"), "speaker": datasets.Value("string"), } ), ) def _split_generators(self, dl_manager): dl_manager.download_config.ignore_url_params = True archive_paths = {} metadata_path = dl_manager.download_and_extract(f"{_DATA_URL}/metadata.tsv") local_extracted_archive_paths_list = [] for speaker, dates in _DATASET_DICT.items(): audio_urls = {} audio_urls["train"] = [] for date in dates: audio_urls["train"].append(f"{_DATA_URL}/{date}-{speaker}.tar") archive_paths = dl_manager.download(audio_urls) local_extracted_archive_paths = ( dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} ) local_extracted_archive_paths_list.append(local_extracted_archive_paths) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths[0].get( "train" ), "archives": [ dl_manager.iter_archive(path) for path in archive_paths.get("train") ], "meta_path": metadata_path, }, ) ] def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): meta_data = {} with open(meta_path, "r", encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for row in reader: meta_data[row["path"]] = row for i, archive in enumerate(archives): for path, file_obj in archive: if path in meta_data: result = dict(meta_data[path]) path = ( os.path.join(local_extracted_archive_paths, path) if local_extracted_archive_paths else path ) result["audio"] = {"path": path, "bytes": file_obj.read()} result["path"] = path yield path, result