File size: 3,100 Bytes
65eeff2 5043acf 4bbda0f e6f9315 5043acf 9c4dbd2 65eeff2 e6f9315 f0e3144 7e6f422 d65c539 aa8f15a e6f9315 aa8f15a e135c07 e6f9315 e135c07 1dae307 e6f9315 1dae307 e6f9315 1851f34 d65c539 7e6f422 9c4dbd2 0dae7d5 175bd4d b078588 7e6f422 d65c539 9997993 e31804f 1851f34 7e6f422 108cf13 c6ef87c 65eeff2 04b2f2f 497d122 04b2f2f 4bbda0f 04b2f2f 4bbda0f 04b2f2f 4bbda0f 04b2f2f 4bbda0f 04b2f2f 4bbda0f 04b2f2f 497d122 04b2f2f 497d122 04b2f2f e6f9315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
language:
- pt
- de
- fr
- sv
- it
- es
- nl
license: mit
pretty_name: JWLang Corpus
datasets:
- jwlang
tags:
- automatic-speech-recognition
- speech
- dataset
- jw.org
- multilingual
- whisper
viewer: true
dataset_info:
- config_name: de
features:
- name: client_id
dtype: string
- name: audio
dtype: audio
- name: sentence
dtype: string
- name: language
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 44420148
num_examples: 949
- name: test
num_bytes: 5730879
num_examples: 119
- name: val
num_bytes: 5849167
num_examples: 119
download_size: 111774920
dataset_size: 56000194
- config_name: fr
features:
- name: client_id
dtype: string
- name: audio
dtype: audio
- name: sentence
dtype: string
- name: language
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 40751557.0
num_examples: 939
download_size: 40643097
dataset_size: 40751557.0
- config_name: pt
features:
- name: client_id
dtype: string
- name: audio
dtype: audio
- name: sentence
dtype: string
- name: language
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 45540940.152
num_examples: 1004
- name: test
num_bytes: 5906213.0
num_examples: 126
- name: val
num_bytes: 5474968.0
num_examples: 125
download_size: 283888289
dataset_size: 56922121.152
configs:
- config_name: de
data_files:
- split: train
path: de/train-*
- split: test
path: de/test-*
- split: val
path: de/val-*
- config_name: fr
data_files:
- split: train
path: fr/train-*
- config_name: pt
data_files:
- split: train
path: pt/train-*
- split: test
path: pt/test-*
- split: val
path: pt/val-*
---
# JWLang Corpus
## Dataset Summary
The JWLang Corpus is a collection of audio and corresponding text data from JW Broadcasting videos available on the [jw.org](https://www.jw.org) website. It is designed for training and fine-tuning automatic speech recognition (ASR) models, specifically OpenAI Whisper. The dataset is stored in Parquet format on Hugging Face, with original audio files in MP3 format and corresponding text files. The data were downloaded in June 2024.
## Splits
- Train
- Validation
- Test
## Usage
To load and use the dataset:
```python
from datasets import load_dataset
dataset = load_dataset("M2LabOrg/jwlang")
```
## Example Data
Example text snippet from the dataset:
```json
{
"audio": "path/to/audio.mp3",
"text": "Example subtitle text."
}
```
## License
```
This dataset is private and intended for internal use only.
```
## Citation
If you use this dataset, please cite:
```
@article{jwlang_corpus,
title={JWLang Corpus from jw.org Videos for ASR Training},
author={Michel Mesquita},
journal={Unpublished},
year={2024},
note={Data downloaded from jw.org in June 2024 and processed by M. Mesquita}
}
```
## Contact
For any questions or issues, please contact [Michel Mesquita](mailto:[email protected]). |