--- language: - pt - de - fr - sv - it - es - nl license: mit pretty_name: JWLang Corpus datasets: - jwlang tags: - automatic-speech-recognition - speech - dataset - jw.org - multilingual - whisper viewer: true dataset_info: - config_name: de features: - name: client_id dtype: string - name: audio dtype: audio - name: sentence dtype: string - name: language dtype: string - name: split dtype: string splits: - name: train num_bytes: 44420148.0 num_examples: 949 - name: test num_bytes: 5730879.0 num_examples: 119 - name: val num_bytes: 5849167.0 num_examples: 119 download_size: 223549840 dataset_size: 56000194.0 - config_name: es features: - name: client_id dtype: string - name: audio dtype: audio - name: sentence dtype: string - name: language dtype: string - name: split dtype: string splits: - name: train num_bytes: 43155769.0 num_examples: 973 - name: test num_bytes: 5317858.0 num_examples: 122 download_size: 48259374 dataset_size: 48473627.0 - config_name: fr features: - name: client_id dtype: string - name: audio dtype: audio - name: sentence dtype: string - name: language dtype: string - name: split dtype: string splits: - name: train num_bytes: 40751557.0 num_examples: 939 - name: test num_bytes: 5126357.0 num_examples: 118 - name: val num_bytes: 5393533.0 num_examples: 117 download_size: 102271952 dataset_size: 51271447.0 - config_name: pt features: - name: client_id dtype: string - name: audio dtype: audio - name: sentence dtype: string - name: language dtype: string - name: split dtype: string splits: - name: train num_bytes: 45540940.152 num_examples: 1004 - name: test num_bytes: 5906213.0 num_examples: 126 - name: val num_bytes: 5474968.0 num_examples: 125 download_size: 340665914 dataset_size: 56922121.152 configs: - config_name: de data_files: - split: train path: de/train-* - split: test path: de/test-* - split: val path: de/val-* - config_name: es data_files: - split: train path: es/train-* - split: test path: es/test-* - config_name: fr data_files: - split: train path: fr/train-* - split: test path: fr/test-* - split: val path: fr/val-* - config_name: pt data_files: - split: train path: pt/train-* - split: test path: pt/test-* - split: val path: pt/val-* --- # JWLang Corpus ## Dataset Summary The JWLang Corpus is a collection of audio and corresponding text data from JW Broadcasting videos available on the [jw.org](https://www.jw.org) website. It is designed for training and fine-tuning automatic speech recognition (ASR) models, specifically OpenAI Whisper. The dataset is stored in Parquet format on Hugging Face, with original audio files in MP3 format and corresponding text files. The data were downloaded in June 2024. ## Splits - Train - Validation - Test ## Usage To load and use the dataset: ```python from datasets import load_dataset dataset = load_dataset("M2LabOrg/jwlang") ``` ## Example Data Example text snippet from the dataset: ```json { "audio": "path/to/audio.mp3", "text": "Example subtitle text." } ``` ## License ``` This dataset is private and intended for internal use only. ``` ## Citation If you use this dataset, please cite: ``` @article{jwlang_corpus, title={JWLang Corpus from jw.org Videos for ASR Training}, author={Michel Mesquita}, journal={Unpublished}, year={2024}, note={Data downloaded from jw.org in June 2024 and processed by M. Mesquita} } ``` ## Contact For any questions or issues, please contact [Michel Mesquita](mailto:mmeclimate@gmail.com).