Datasets:
Commit
•
9ef3490
1
Parent(s):
9dac28a
modify loading script for to allow both wav and opus configurations
Browse files- ml_spoken_words.py +24 -16
ml_spoken_words.py
CHANGED
@@ -23,6 +23,7 @@ totaling 23.4 million 1-second spoken examples (over 6,000 hours).
|
|
23 |
|
24 |
|
25 |
import csv
|
|
|
26 |
from functools import partial
|
27 |
|
28 |
import datasets
|
@@ -55,10 +56,10 @@ _LICENSE = "CC-BY 4.0."
|
|
55 |
|
56 |
_VERSION = datasets.Version("1.0.0")
|
57 |
|
58 |
-
_BASE_URL = "https://huggingface.co/datasets/polinaeterna/ml_spoken_words/resolve/main/data/
|
59 |
-
_AUDIO_URL = _BASE_URL + "{split}/audio/{n}.tar.gz"
|
60 |
-
|
61 |
-
|
62 |
|
63 |
_GENDERS = ["MALE", "FEMALE", "OTHER", "NAN"]
|
64 |
|
@@ -119,7 +120,7 @@ _LANGUAGES = [
|
|
119 |
class MlSpokenWordsConfig(datasets.BuilderConfig):
|
120 |
"""BuilderConfig for MlSpokenWords."""
|
121 |
|
122 |
-
def __init__(self, *args, languages, **kwargs):
|
123 |
"""BuilderConfig for MlSpokenWords.
|
124 |
Args:
|
125 |
languages (:obj:`Union[List[str], str]`): language or list of languages to load
|
@@ -127,10 +128,11 @@ class MlSpokenWordsConfig(datasets.BuilderConfig):
|
|
127 |
"""
|
128 |
super().__init__(
|
129 |
*args,
|
130 |
-
name="+".join(languages) if isinstance(languages, list) else languages,
|
131 |
**kwargs,
|
132 |
)
|
133 |
self.languages = languages if isinstance(languages, list) else [languages]
|
|
|
134 |
|
135 |
|
136 |
class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
@@ -143,7 +145,11 @@ class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
|
143 |
"""
|
144 |
|
145 |
VERSION = _VERSION
|
146 |
-
BUILDER_CONFIGS = [
|
|
|
|
|
|
|
|
|
147 |
BUILDER_CONFIG_CLASS = MlSpokenWordsConfig
|
148 |
|
149 |
def _info(self):
|
@@ -154,8 +160,9 @@ class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
|
154 |
"language": datasets.ClassLabel(names=self.config.languages),
|
155 |
"speaker_id": datasets.Value("string"),
|
156 |
"gender": datasets.ClassLabel(names=_GENDERS),
|
157 |
-
"keyword": datasets.Value("string"), #
|
158 |
-
"audio": datasets.Audio(sampling_rate=48_000)
|
|
|
159 |
}
|
160 |
)
|
161 |
return datasets.DatasetInfo(
|
@@ -168,7 +175,7 @@ class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
|
168 |
|
169 |
def _split_generators(self, dl_manager):
|
170 |
splits_archive_path = [dl_manager.download(_SPLITS_URL.format(lang=lang)) for lang in self.config.languages]
|
171 |
-
download_audio = partial(_download_audio_archives, dl_manager=dl_manager)
|
172 |
|
173 |
return [
|
174 |
datasets.SplitGenerator(
|
@@ -206,8 +213,8 @@ class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
|
206 |
for i, (link, word, is_valid, speaker, gender) in enumerate(csv_reader):
|
207 |
if i == 0:
|
208 |
continue
|
209 |
-
|
210 |
-
metadata[
|
211 |
"keyword": word,
|
212 |
"is_valid": is_valid,
|
213 |
"speaker_id": speaker,
|
@@ -216,15 +223,16 @@ class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
|
216 |
|
217 |
for audio_archive in audio_archives[lang_idx]:
|
218 |
for audio_filename, audio_file in audio_archive:
|
|
|
219 |
yield audio_filename, {
|
220 |
"file": audio_filename,
|
221 |
"language": lang,
|
222 |
"audio": {"path": audio_filename, "bytes": audio_file.read()},
|
223 |
-
**metadata[
|
224 |
}
|
225 |
|
226 |
|
227 |
-
def _download_audio_archives(dl_manager, lang, split):
|
228 |
"""
|
229 |
All audio files are stored in several .tar.gz archives with names like 0.tar.gz, 1.tar.gz, ...
|
230 |
Number of archives stored in a separate .txt file (n_files.txt)
|
@@ -232,13 +240,13 @@ def _download_audio_archives(dl_manager, lang, split):
|
|
232 |
Prepare all the audio archives for iterating over them and their audio files.
|
233 |
"""
|
234 |
|
235 |
-
n_files_url = _N_FILES_URL.format(lang=lang, split=split)
|
236 |
n_files_path = dl_manager.download(n_files_url)
|
237 |
|
238 |
with open(n_files_path, "r", encoding="utf-8") as file:
|
239 |
n_files = int(file.read().strip()) # the file contains a number of archives
|
240 |
|
241 |
-
archive_urls = [_AUDIO_URL.format(lang=lang, split=split, n=i) for i in range(n_files)]
|
242 |
archive_paths = dl_manager.download(archive_urls)
|
243 |
|
244 |
return [dl_manager.iter_archive(archive_path) for archive_path in archive_paths]
|
|
|
23 |
|
24 |
|
25 |
import csv
|
26 |
+
import os.path
|
27 |
from functools import partial
|
28 |
|
29 |
import datasets
|
|
|
56 |
|
57 |
_VERSION = datasets.Version("1.0.0")
|
58 |
|
59 |
+
_BASE_URL = "https://huggingface.co/datasets/polinaeterna/ml_spoken_words/resolve/main/data/"
|
60 |
+
_AUDIO_URL = _BASE_URL + "{format}/{lang}/{split}/audio/{n}.tar.gz"
|
61 |
+
_N_FILES_URL = _BASE_URL + "{format}/{lang}/{split}/n_files.txt"
|
62 |
+
_SPLITS_URL = _BASE_URL + "splits/{lang}/splits.tar.gz"
|
63 |
|
64 |
_GENDERS = ["MALE", "FEMALE", "OTHER", "NAN"]
|
65 |
|
|
|
120 |
class MlSpokenWordsConfig(datasets.BuilderConfig):
|
121 |
"""BuilderConfig for MlSpokenWords."""
|
122 |
|
123 |
+
def __init__(self, *args, languages, format="wav", **kwargs):
|
124 |
"""BuilderConfig for MlSpokenWords.
|
125 |
Args:
|
126 |
languages (:obj:`Union[List[str], str]`): language or list of languages to load
|
|
|
128 |
"""
|
129 |
super().__init__(
|
130 |
*args,
|
131 |
+
name="+".join(languages) + "_" + format if isinstance(languages, list) else languages + "_" + format,
|
132 |
**kwargs,
|
133 |
)
|
134 |
self.languages = languages if isinstance(languages, list) else [languages]
|
135 |
+
self.format = format
|
136 |
|
137 |
|
138 |
class MlSpokenWords(datasets.GeneratorBasedBuilder):
|
|
|
145 |
"""
|
146 |
|
147 |
VERSION = _VERSION
|
148 |
+
BUILDER_CONFIGS = [
|
149 |
+
MlSpokenWordsConfig(languages=[lang], format="wav", version=_VERSION) for lang in _LANGUAGES
|
150 |
+
] + [
|
151 |
+
MlSpokenWordsConfig(languages=[lang], format="opus", version=_VERSION) for lang in _LANGUAGES
|
152 |
+
]
|
153 |
BUILDER_CONFIG_CLASS = MlSpokenWordsConfig
|
154 |
|
155 |
def _info(self):
|
|
|
160 |
"language": datasets.ClassLabel(names=self.config.languages),
|
161 |
"speaker_id": datasets.Value("string"),
|
162 |
"gender": datasets.ClassLabel(names=_GENDERS),
|
163 |
+
"keyword": datasets.Value("string"), # 340k unique keywords
|
164 |
+
"audio": datasets.Audio(sampling_rate=48_000) if self.config.format == "opus" \
|
165 |
+
else datasets.Audio(sampling_rate=16_000),
|
166 |
}
|
167 |
)
|
168 |
return datasets.DatasetInfo(
|
|
|
175 |
|
176 |
def _split_generators(self, dl_manager):
|
177 |
splits_archive_path = [dl_manager.download(_SPLITS_URL.format(lang=lang)) for lang in self.config.languages]
|
178 |
+
download_audio = partial(_download_audio_archives, format=self.config.format, dl_manager=dl_manager)
|
179 |
|
180 |
return [
|
181 |
datasets.SplitGenerator(
|
|
|
213 |
for i, (link, word, is_valid, speaker, gender) in enumerate(csv_reader):
|
214 |
if i == 0:
|
215 |
continue
|
216 |
+
audio_id, audio_ext = os.path.splitext("_".join(link.split("/")))
|
217 |
+
metadata[audio_id] = {
|
218 |
"keyword": word,
|
219 |
"is_valid": is_valid,
|
220 |
"speaker_id": speaker,
|
|
|
223 |
|
224 |
for audio_archive in audio_archives[lang_idx]:
|
225 |
for audio_filename, audio_file in audio_archive:
|
226 |
+
audio_id, audio_ext = os.path.splitext(audio_filename)
|
227 |
yield audio_filename, {
|
228 |
"file": audio_filename,
|
229 |
"language": lang,
|
230 |
"audio": {"path": audio_filename, "bytes": audio_file.read()},
|
231 |
+
**metadata[audio_id],
|
232 |
}
|
233 |
|
234 |
|
235 |
+
def _download_audio_archives(dl_manager, lang, format, split):
|
236 |
"""
|
237 |
All audio files are stored in several .tar.gz archives with names like 0.tar.gz, 1.tar.gz, ...
|
238 |
Number of archives stored in a separate .txt file (n_files.txt)
|
|
|
240 |
Prepare all the audio archives for iterating over them and their audio files.
|
241 |
"""
|
242 |
|
243 |
+
n_files_url = _N_FILES_URL.format(lang=lang, format=format, split=split)
|
244 |
n_files_path = dl_manager.download(n_files_url)
|
245 |
|
246 |
with open(n_files_path, "r", encoding="utf-8") as file:
|
247 |
n_files = int(file.read().strip()) # the file contains a number of archives
|
248 |
|
249 |
+
archive_urls = [_AUDIO_URL.format(lang=lang, format=format, split=split, n=i) for i in range(n_files)]
|
250 |
archive_paths = dl_manager.download(archive_urls)
|
251 |
|
252 |
return [dl_manager.iter_archive(archive_path) for archive_path in archive_paths]
|