Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
elliesleightholm commited on
Commit
6c5db7f
1 Parent(s): a57d90b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -9
README.md CHANGED
@@ -44,20 +44,28 @@ size_categories:
44
  - 1M<n<10M
45
  ---
46
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  # Marqo-GS-10M
49
- This dataset is our multimodal, fine-grained, ranking dataset, **Marqo-GS-10M** followed by our novel training framework: Generalized Contrastive Learning (GCL).
50
-
51
- Blog post: https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking
52
-
53
- Paper: https://arxiv.org/pdf/2404.08535.pdf
54
 
55
- GitHub: https://github.com/marqo-ai/GCL
 
56
 
57
- This work aims to improve and measure the **ranking** performance of information retrieval models,
58
- especially for retrieving relevant **products** given a search query.
59
 
60
- **Release WIP**: GCL Training Framework.
61
  ## Table of Content
62
  1. Motivation
63
  2. Dataset and Benchmarks
@@ -124,6 +132,16 @@ a set of validation ground truth and a set of test ground truth.
124
  ### Dataset Downloads
125
  The Marqo-GS-10M dataset is available for direct download. This dataset is pivotal for training and benchmarking in Generalized Contrastive Learning (GCL) frameworks and other multi-modal fine-grained ranking tasks.
126
 
 
 
 
 
 
 
 
 
 
 
127
  - **Full Dataset**: [Download](https://marqo-gcl-public.s3.amazonaws.com/v1/marqo-gs-dataset.tar) - Link contains the entire Marqo-GS-10M dataset except for the images.
128
  - **Full Images**: [Download](https://marqo-gcl-public.s3.amazonaws.com/v1/images_archive.tar) - Link contains the images of the entire Marqo-GS-10M dataset.
129
  - **Sample Images**: [Download](https://marqo-gcl-public.s3.amazonaws.com/v1/images_wfash.tar) - Link contains the images for woman fashion category, it corresponds to the woman fashion sub-dataset.
 
44
  - 1M<n<10M
45
  ---
46
 
47
+ <div style="display: flex; align-items: center; gap: 10px;">
48
+ <a href="https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking">
49
+ <img src="https://img.shields.io/badge/Marqo-Blog-blue?logo=font-awesome&logoColor=white&style=flat&logo=pencil-alt" alt="Blog">
50
+ </a>
51
+ <a href="https://arxiv.org/pdf/2404.08535.pdf">
52
+ <img src="https://img.shields.io/badge/arXiv-Paper-red?logo=arxiv" alt="arXiv Paper">
53
+ </a>
54
+ <a href="https://github.com/marqo-ai/GCL">
55
+ <img src="https://img.shields.io/badge/GitHub-Repo-lightgrey?logo=github" alt="GitHub Repo">
56
+ </a>
57
+ </div>
58
 
59
  # Marqo-GS-10M
60
+ This dataset is our multimodal, fine-grained, ranking Google Shopping dataset, **Marqo-GS-10M**, followed by our novel training framework: Generalized Contrastive Learning (GCL). GCL aims to improve and measure the **ranking** performance of information retrieval models,
61
+ especially for retrieving relevant **products** given a search query.
 
 
 
62
 
63
+ ```python
64
+ from datasets import load_dataset
65
 
66
+ ds = load_dataset("Marqo/marqo-GS-10M")
67
+ ```
68
 
 
69
  ## Table of Content
70
  1. Motivation
71
  2. Dataset and Benchmarks
 
132
  ### Dataset Downloads
133
  The Marqo-GS-10M dataset is available for direct download. This dataset is pivotal for training and benchmarking in Generalized Contrastive Learning (GCL) frameworks and other multi-modal fine-grained ranking tasks.
134
 
135
+ You can use the dataset with Hugging Face's `datasets`:
136
+
137
+ ```python
138
+ from datasets import load_dataset
139
+
140
+ ds = load_dataset("Marqo/marqo-GS-10M")
141
+ ```
142
+
143
+ Alternatively:
144
+
145
  - **Full Dataset**: [Download](https://marqo-gcl-public.s3.amazonaws.com/v1/marqo-gs-dataset.tar) - Link contains the entire Marqo-GS-10M dataset except for the images.
146
  - **Full Images**: [Download](https://marqo-gcl-public.s3.amazonaws.com/v1/images_archive.tar) - Link contains the images of the entire Marqo-GS-10M dataset.
147
  - **Sample Images**: [Download](https://marqo-gcl-public.s3.amazonaws.com/v1/images_wfash.tar) - Link contains the images for woman fashion category, it corresponds to the woman fashion sub-dataset.