wili_2018 / wili_2018.py
system's picture
system HF staff
Update files from the datasets library (from 1.8.0)
1271d74
raw
history blame
6.19 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""WiLI-2018, the Wikipedia language identification benchmark dataset"""
import datasets
from datasets.tasks import TextClassification
_CITATION = """\
@dataset{thoma_martin_2018_841984,
author = {Thoma, Martin},
title = {{WiLI-2018 - Wikipedia Language Identification database}},
month = jan,
year = 2018,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.841984},
url = {https://doi.org/10.5281/zenodo.841984}
}
"""
_DESCRIPTION = """\
It is a benchmark dataset for language identification and contains 235000 paragraphs of 235 languages
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://zenodo.org/record/841984"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "ODC Open Database License v1.0"
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_TRAIN_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=1ZzlIQvw1KNBG97QQCfdatvVrrbeLaM1u"
_TEST_DOWNLOAD_URL = "https://drive.google.com/uc?export=download&id=1Xx4kFc1Xdzz8AhDasxZ0cSa-a35EQSDZ"
_CLASSES = [
"cdo",
"glk",
"jam",
"lug",
"san",
"rue",
"wol",
"new",
"mwl",
"bre",
"ara",
"hye",
"xmf",
"ext",
"cor",
"yor",
"div",
"asm",
"lat",
"cym",
"hif",
"ace",
"kbd",
"tgk",
"rus",
"nso",
"mya",
"msa",
"ava",
"cbk",
"urd",
"deu",
"swa",
"pus",
"bxr",
"udm",
"csb",
"yid",
"vro",
"por",
"pdc",
"eng",
"tha",
"hat",
"lmo",
"pag",
"jav",
"chv",
"nan",
"sco",
"kat",
"bho",
"bos",
"kok",
"oss",
"mri",
"fry",
"cat",
"azb",
"kin",
"hin",
"sna",
"dan",
"egl",
"mkd",
"ron",
"bul",
"hrv",
"som",
"pam",
"nav",
"ksh",
"nci",
"khm",
"sgs",
"srn",
"bar",
"cos",
"ckb",
"pfl",
"arz",
"roa-tara",
"fra",
"mai",
"zh-yue",
"guj",
"fin",
"kir",
"vol",
"hau",
"afr",
"uig",
"lao",
"swe",
"slv",
"kor",
"szl",
"srp",
"dty",
"nrm",
"dsb",
"ind",
"wln",
"pnb",
"ukr",
"bpy",
"vie",
"tur",
"aym",
"lit",
"zea",
"pol",
"est",
"scn",
"vls",
"stq",
"gag",
"grn",
"kaz",
"ben",
"pcd",
"bjn",
"krc",
"amh",
"diq",
"ltz",
"ita",
"kab",
"bel",
"ang",
"mhr",
"che",
"koi",
"glv",
"ido",
"fao",
"bak",
"isl",
"bcl",
"tet",
"jpn",
"kur",
"map-bms",
"tyv",
"olo",
"arg",
"ori",
"lim",
"tel",
"lin",
"roh",
"sqi",
"xho",
"mlg",
"fas",
"hbs",
"tam",
"aze",
"lad",
"nob",
"sin",
"gla",
"nap",
"snd",
"ast",
"mal",
"mdf",
"tsn",
"nds",
"tgl",
"nno",
"sun",
"lzh",
"jbo",
"crh",
"pap",
"oci",
"hak",
"uzb",
"zho",
"hsb",
"sme",
"mlt",
"vep",
"lez",
"nld",
"nds-nl",
"mrj",
"spa",
"ceb",
"ina",
"heb",
"hun",
"que",
"kaa",
"mar",
"vec",
"frp",
"ell",
"sah",
"eus",
"ces",
"slk",
"chr",
"lij",
"nep",
"srd",
"ilo",
"be-tarask",
"bod",
"orm",
"war",
"glg",
"mon",
"gle",
"min",
"ibo",
"ile",
"epo",
"lav",
"lrc",
"als",
"mzn",
"rup",
"fur",
"tat",
"myv",
"pan",
"ton",
"kom",
"wuu",
"tcy",
"tuk",
"kan",
"ltg",
]
class Wili_2018(datasets.GeneratorBasedBuilder):
"""WiLI Language Identification Dataset"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="WiLI-2018 dataset",
version=VERSION,
description="Plain text of import of WiLI-2018",
)
]
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=datasets.Features(
{"sentence": datasets.Value("string"), "label": datasets.features.ClassLabel(names=_CLASSES)}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[TextClassification(text_column="sentence", label_column="label")],
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
for id_, line in enumerate(f):
text, label = line.rsplit(",", 1)
text = text.strip('"')
label = int(label.strip())
yield id_, {"sentence": text, "label": label - 1}