Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
100K - 1M
ArXiv:
Tags:
language-identification
License:
add dataset_info in dataset metadata
Browse files
README.md
CHANGED
@@ -257,6 +257,259 @@ paperswithcode_id: wili-2018
|
|
257 |
pretty_name: Wili2018
|
258 |
tags:
|
259 |
- language-identification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
---
|
261 |
|
262 |
# Dataset Card for wili_2018
|
|
|
257 |
pretty_name: Wili2018
|
258 |
tags:
|
259 |
- language-identification
|
260 |
+
dataset_info:
|
261 |
+
features:
|
262 |
+
- name: sentence
|
263 |
+
dtype: string
|
264 |
+
- name: label
|
265 |
+
dtype:
|
266 |
+
class_label:
|
267 |
+
names:
|
268 |
+
0: cdo
|
269 |
+
1: glk
|
270 |
+
2: jam
|
271 |
+
3: lug
|
272 |
+
4: san
|
273 |
+
5: rue
|
274 |
+
6: wol
|
275 |
+
7: new
|
276 |
+
8: mwl
|
277 |
+
9: bre
|
278 |
+
10: ara
|
279 |
+
11: hye
|
280 |
+
12: xmf
|
281 |
+
13: ext
|
282 |
+
14: cor
|
283 |
+
15: yor
|
284 |
+
16: div
|
285 |
+
17: asm
|
286 |
+
18: lat
|
287 |
+
19: cym
|
288 |
+
20: hif
|
289 |
+
21: ace
|
290 |
+
22: kbd
|
291 |
+
23: tgk
|
292 |
+
24: rus
|
293 |
+
25: nso
|
294 |
+
26: mya
|
295 |
+
27: msa
|
296 |
+
28: ava
|
297 |
+
29: cbk
|
298 |
+
30: urd
|
299 |
+
31: deu
|
300 |
+
32: swa
|
301 |
+
33: pus
|
302 |
+
34: bxr
|
303 |
+
35: udm
|
304 |
+
36: csb
|
305 |
+
37: yid
|
306 |
+
38: vro
|
307 |
+
39: por
|
308 |
+
40: pdc
|
309 |
+
41: eng
|
310 |
+
42: tha
|
311 |
+
43: hat
|
312 |
+
44: lmo
|
313 |
+
45: pag
|
314 |
+
46: jav
|
315 |
+
47: chv
|
316 |
+
48: nan
|
317 |
+
49: sco
|
318 |
+
50: kat
|
319 |
+
51: bho
|
320 |
+
52: bos
|
321 |
+
53: kok
|
322 |
+
54: oss
|
323 |
+
55: mri
|
324 |
+
56: fry
|
325 |
+
57: cat
|
326 |
+
58: azb
|
327 |
+
59: kin
|
328 |
+
60: hin
|
329 |
+
61: sna
|
330 |
+
62: dan
|
331 |
+
63: egl
|
332 |
+
64: mkd
|
333 |
+
65: ron
|
334 |
+
66: bul
|
335 |
+
67: hrv
|
336 |
+
68: som
|
337 |
+
69: pam
|
338 |
+
70: nav
|
339 |
+
71: ksh
|
340 |
+
72: nci
|
341 |
+
73: khm
|
342 |
+
74: sgs
|
343 |
+
75: srn
|
344 |
+
76: bar
|
345 |
+
77: cos
|
346 |
+
78: ckb
|
347 |
+
79: pfl
|
348 |
+
80: arz
|
349 |
+
81: roa-tara
|
350 |
+
82: fra
|
351 |
+
83: mai
|
352 |
+
84: zh-yue
|
353 |
+
85: guj
|
354 |
+
86: fin
|
355 |
+
87: kir
|
356 |
+
88: vol
|
357 |
+
89: hau
|
358 |
+
90: afr
|
359 |
+
91: uig
|
360 |
+
92: lao
|
361 |
+
93: swe
|
362 |
+
94: slv
|
363 |
+
95: kor
|
364 |
+
96: szl
|
365 |
+
97: srp
|
366 |
+
98: dty
|
367 |
+
99: nrm
|
368 |
+
100: dsb
|
369 |
+
101: ind
|
370 |
+
102: wln
|
371 |
+
103: pnb
|
372 |
+
104: ukr
|
373 |
+
105: bpy
|
374 |
+
106: vie
|
375 |
+
107: tur
|
376 |
+
108: aym
|
377 |
+
109: lit
|
378 |
+
110: zea
|
379 |
+
111: pol
|
380 |
+
112: est
|
381 |
+
113: scn
|
382 |
+
114: vls
|
383 |
+
115: stq
|
384 |
+
116: gag
|
385 |
+
117: grn
|
386 |
+
118: kaz
|
387 |
+
119: ben
|
388 |
+
120: pcd
|
389 |
+
121: bjn
|
390 |
+
122: krc
|
391 |
+
123: amh
|
392 |
+
124: diq
|
393 |
+
125: ltz
|
394 |
+
126: ita
|
395 |
+
127: kab
|
396 |
+
128: bel
|
397 |
+
129: ang
|
398 |
+
130: mhr
|
399 |
+
131: che
|
400 |
+
132: koi
|
401 |
+
133: glv
|
402 |
+
134: ido
|
403 |
+
135: fao
|
404 |
+
136: bak
|
405 |
+
137: isl
|
406 |
+
138: bcl
|
407 |
+
139: tet
|
408 |
+
140: jpn
|
409 |
+
141: kur
|
410 |
+
142: map-bms
|
411 |
+
143: tyv
|
412 |
+
144: olo
|
413 |
+
145: arg
|
414 |
+
146: ori
|
415 |
+
147: lim
|
416 |
+
148: tel
|
417 |
+
149: lin
|
418 |
+
150: roh
|
419 |
+
151: sqi
|
420 |
+
152: xho
|
421 |
+
153: mlg
|
422 |
+
154: fas
|
423 |
+
155: hbs
|
424 |
+
156: tam
|
425 |
+
157: aze
|
426 |
+
158: lad
|
427 |
+
159: nob
|
428 |
+
160: sin
|
429 |
+
161: gla
|
430 |
+
162: nap
|
431 |
+
163: snd
|
432 |
+
164: ast
|
433 |
+
165: mal
|
434 |
+
166: mdf
|
435 |
+
167: tsn
|
436 |
+
168: nds
|
437 |
+
169: tgl
|
438 |
+
170: nno
|
439 |
+
171: sun
|
440 |
+
172: lzh
|
441 |
+
173: jbo
|
442 |
+
174: crh
|
443 |
+
175: pap
|
444 |
+
176: oci
|
445 |
+
177: hak
|
446 |
+
178: uzb
|
447 |
+
179: zho
|
448 |
+
180: hsb
|
449 |
+
181: sme
|
450 |
+
182: mlt
|
451 |
+
183: vep
|
452 |
+
184: lez
|
453 |
+
185: nld
|
454 |
+
186: nds-nl
|
455 |
+
187: mrj
|
456 |
+
188: spa
|
457 |
+
189: ceb
|
458 |
+
190: ina
|
459 |
+
191: heb
|
460 |
+
192: hun
|
461 |
+
193: que
|
462 |
+
194: kaa
|
463 |
+
195: mar
|
464 |
+
196: vec
|
465 |
+
197: frp
|
466 |
+
198: ell
|
467 |
+
199: sah
|
468 |
+
200: eus
|
469 |
+
201: ces
|
470 |
+
202: slk
|
471 |
+
203: chr
|
472 |
+
204: lij
|
473 |
+
205: nep
|
474 |
+
206: srd
|
475 |
+
207: ilo
|
476 |
+
208: be-tarask
|
477 |
+
209: bod
|
478 |
+
210: orm
|
479 |
+
211: war
|
480 |
+
212: glg
|
481 |
+
213: mon
|
482 |
+
214: gle
|
483 |
+
215: min
|
484 |
+
216: ibo
|
485 |
+
217: ile
|
486 |
+
218: epo
|
487 |
+
219: lav
|
488 |
+
220: lrc
|
489 |
+
221: als
|
490 |
+
222: mzn
|
491 |
+
223: rup
|
492 |
+
224: fur
|
493 |
+
225: tat
|
494 |
+
226: myv
|
495 |
+
227: pan
|
496 |
+
228: ton
|
497 |
+
229: kom
|
498 |
+
230: wuu
|
499 |
+
231: tcy
|
500 |
+
232: tuk
|
501 |
+
233: kan
|
502 |
+
234: ltg
|
503 |
+
config_name: WiLI-2018 dataset
|
504 |
+
splits:
|
505 |
+
- name: test
|
506 |
+
num_bytes: 66491260
|
507 |
+
num_examples: 117500
|
508 |
+
- name: train
|
509 |
+
num_bytes: 65408201
|
510 |
+
num_examples: 117500
|
511 |
+
download_size: 130516351
|
512 |
+
dataset_size: 131899461
|
513 |
---
|
514 |
|
515 |
# Dataset Card for wili_2018
|