Create homo_ita.py
Browse files- homo_ita.py +84 -0
homo_ita.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Artem Ploujnikov
|
3 |
+
|
4 |
+
|
5 |
+
# Lint as: python3
|
6 |
+
import json
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
_DESCRIPTION = """\
|
11 |
+
Grapheme-to-Phoneme training, validation and test sets
|
12 |
+
"""
|
13 |
+
|
14 |
+
_BASE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space/resolve/main/dataset"
|
15 |
+
_HOMEPAGE_URL = "https://huggingface.co/datasets/flexthink/librig2p-nostress-space"
|
16 |
+
_NA = "N/A"
|
17 |
+
_SPLIT_TYPES = ["train", "valid", "test"]
|
18 |
+
_DATA_TYPES = ["lexicon", "sentence", "homograph"]
|
19 |
+
_SPLITS = [
|
20 |
+
f"{data_type}_{split_type}"
|
21 |
+
for data_type in _DATA_TYPES
|
22 |
+
for split_type in _SPLIT_TYPES
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
class GraphemeToPhoneme(datasets.GeneratorBasedBuilder):
|
27 |
+
def __init__(self, base_url=None, splits=None, *args, **kwargs):
|
28 |
+
super().__init__(*args, **kwargs)
|
29 |
+
self.base_url = base_url or _BASE_URL
|
30 |
+
self.splits = splits or _SPLITS
|
31 |
+
|
32 |
+
def _info(self):
|
33 |
+
return datasets.DatasetInfo(
|
34 |
+
description=_DESCRIPTION,
|
35 |
+
features=datasets.Features(
|
36 |
+
{
|
37 |
+
"sample_id": datasets.Value("string"),
|
38 |
+
"speaker_id": datasets.Value("string"),
|
39 |
+
"origin": datasets.Value("string"),
|
40 |
+
"char": datasets.Value("string"),
|
41 |
+
"phn": datasets.Sequence(datasets.Value("string")),
|
42 |
+
"homograph": datasets.Value("string"),
|
43 |
+
"homograph_wordid": datasets.Value("string"),
|
44 |
+
"homograph_char_start": datasets.Value("int32"),
|
45 |
+
"homograph_char_end": datasets.Value("int32"),
|
46 |
+
"homograph_phn_start": datasets.Value("int32"),
|
47 |
+
"homograph_phn_end": datasets.Value("int32"),
|
48 |
+
},
|
49 |
+
),
|
50 |
+
supervised_keys=None,
|
51 |
+
homepage=_HOMEPAGE_URL,
|
52 |
+
)
|
53 |
+
|
54 |
+
def _get_url(self, split):
|
55 |
+
return f"{self.base_url}/{split}.json"
|
56 |
+
|
57 |
+
def _split_generator(self, dl_manager, split):
|
58 |
+
url = self._get_url(split)
|
59 |
+
path = dl_manager.download_and_extract(url)
|
60 |
+
return datasets.SplitGenerator(
|
61 |
+
name=split, gen_kwargs={"datapath": path, "datatype": split},
|
62 |
+
)
|
63 |
+
|
64 |
+
def _split_generators(self, dl_manager):
|
65 |
+
return [self._split_generator(dl_manager, split) for split in self.splits]
|
66 |
+
|
67 |
+
def _generate_examples(self, datapath, datatype):
|
68 |
+
with open(datapath, encoding="utf-8") as f:
|
69 |
+
data = json.load(f)
|
70 |
+
for sentence_counter, (sample_id, item) in enumerate(data.items()):
|
71 |
+
resp = {
|
72 |
+
"sample_id": sample_id,
|
73 |
+
"speaker_id": str(item.get("speaker_id") or _NA),
|
74 |
+
"origin": item["origin"],
|
75 |
+
"char": item["char"],
|
76 |
+
"phn": item["phn"],
|
77 |
+
"homograph": item.get("homograph", _NA),
|
78 |
+
"homograph_wordid": item.get("homograph_wordid", _NA),
|
79 |
+
"homograph_char_start": item.get("homograph_char_start", 0),
|
80 |
+
"homograph_char_end": item.get("homograph_char_end", 0),
|
81 |
+
"homograph_phn_start": item.get("homograph_phn_start", 0),
|
82 |
+
"homograph_phn_end": item.get("homograph_phn_end", 0),
|
83 |
+
}
|
84 |
+
yield sentence_counter, resp
|