# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """TopiOCQA: Open-domain Conversational Question Answering with Topic Switching""" import json import datasets # from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) # _CITATION = """\ # @article{2016arXiv160605250R, # author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, # Konstantin and {Liang}, Percy}, # title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", # journal = {arXiv e-prints}, # year = 2016, # eid = {arXiv:1606.05250}, # pages = {arXiv:1606.05250}, # archivePrefix = {arXiv}, # eprint = {1606.05250}, # } # """ _DESCRIPTION = """\ TopiOCQA is an information-seeking conversational dataset with challenging topic switching phenomena. """ # _URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/" _URLS = { "train": "data/topiocqa_train.json", "valid": "data/topiocqa_valid.json", } class TopiOCQAConfig(datasets.BuilderConfig): """BuilderConfig for SQUAD.""" def __init__(self, **kwargs): """BuilderConfig for TopiOCQA. Args: **kwargs: keyword arguments forwarded to super. """ super(TopiOCQAConfig, self).__init__(**kwargs) class Squad(datasets.GeneratorBasedBuilder): """SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" BUILDER_CONFIGS = [ TopiOCQAConfig( name="plain_text", version=datasets.Version("1.0.0", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "Conversation_no": datasets.Value("int32"), "Turn_no": datasets.Value("int32"), "Question": datasets.Value("string"), "Answer": datasets.Value("string"), "Topic": datasets.Value("string"), "Topic_section": datasets.Value("string"), "Rationale": datasets.Value("string"), "is_nq": datasets.Value("bool"), "Context": datasets.features.Sequence(datasets.Value("string")), "Additional_answers": datasets.features.Sequence( { "Answer": datasets.Value("string"), "Topic": datasets.Value("string"), "Topic_section": datasets.Value("string"), "Rationale": datasets.Value("string"), } ), } ), supervised_keys=None, homepage="https://mcgill-nlp.github.io/topiocqa/", # citation=_CITATION, # task_templates=[ # QuestionAnsweringExtractive( # question_column="Question", context_column="context", answers_column="answers" # ) # ], ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: topiocqa = json.load(f) for turn in topiocqa: yield key, turn key += 1