MedRAG commited on
Commit
39a334e
1 Parent(s): 0eec6df

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ task_categories:
3
+ - question-answering
4
+ language:
5
+ - en
6
+ tags:
7
+ - medical
8
+ - question answering
9
+ - large language model
10
+ - retrieval-augmented generation
11
+ size_categories:
12
+ - 10M<n<100M
13
+ ---
14
+ # The PubMed Corpus in MedRAG
15
+
16
+ This HF dataset contains the snippets from the PubMed corpus used in [MedRAG](https://arxiv.org/abs/2402.13178). It can be used for medical Retrieval-Augmented Generation (RAG).
17
+
18
+ ## Dataset Details
19
+
20
+ ### Dataset Descriptions
21
+
22
+ [PubMed](https://pubmed.ncbi.nlm.nih.gov/) is the most widely used literature resource, containing over 36 million biomedical articles.
23
+ For MedRAG, we use a PubMed subset of 23.9 million articles with valid titles and abstracts.
24
+ This HF dataset contains our ready-to-use snippets for the PubMed corpus, including 23,898,701 snippets with an average of 296 tokens.
25
+
26
+ ### Dataset Structure
27
+ Each row is a snippet of PubMed, which includes the following features:
28
+
29
+ - id: a unique identifier of the snippet
30
+ - title: the title of the PubMed article from which the snippet is collected
31
+ - content: the abstract of the PubMed article from which the snippet is collected
32
+ - contents: a concatenation of 'title' and 'content', which will be used by the [BM25](https://github.com/castorini/pyserini) retriever
33
+
34
+ ## Uses
35
+
36
+ <!-- Address questions around how the dataset is intended to be used. -->
37
+
38
+ ### Direct Use
39
+
40
+ <!-- This section describes suitable use cases for the dataset. -->
41
+
42
+ ```shell
43
+ git clone https://huggingface.co/datasets/MedRAG/pubmed
44
+ ```
45
+
46
+ ### Use in MedRAG
47
+
48
+ ```python
49
+ >> from src.medrag import MedRAG
50
+
51
+ >> question = "A lesion causing compression of the facial nerve at the stylomastoid foramen will cause ipsilateral"
52
+ >> options = {
53
+ "A": "paralysis of the facial muscles.",
54
+ "B": "paralysis of the facial muscles and loss of taste.",
55
+ "C": "paralysis of the facial muscles, loss of taste and lacrimation.",
56
+ "D": "paralysis of the facial muscles, loss of taste, lacrimation and decreased salivation."
57
+ }
58
+
59
+ >> medrag = MedRAG(llm_name="OpenAI/gpt-3.5-turbo-16k", rag=True, retriever_name="MedCPT", corpus_name="PubMed")
60
+ >> answer, snippets, scores = medrag.answer(question=question, options=options, k=32) # scores are given by the retrieval system
61
+ ```
62
+
63
+ ## Citation
64
+ ```shell
65
+ @article{xiong2024benchmarking,
66
+ title={Benchmarking Retrieval-Augmented Generation for Medicine},
67
+ author={Guangzhi Xiong and Qiao Jin and Zhiyong Lu and Aidong Zhang},
68
+ journal={arXiv preprint arXiv:2402.13178},
69
+ year={2024}
70
+ }
71
+ ```